Oak Brook Park District 1450 Forest Gate Road Oak Brook, IL 60523

REQUEST FOR LETTERS OF INTEREST AND STATEMENTS OF QUALIFICATIONS FOR PROFESSIONAL SERVICES

OAKBROOK PARK DISTRICT 1450 Forest Gate Road Oak Brook, IL 60523

REQUEST FOR LETTERS OF INTEREST AND STATEMENTS OF QUALIFICATIONS FOR PROFESSIONAL SERVICES

TABLE OF CONTENTS

RFQ Notice	3
Cover Letter	4
Project Understanding	5
Scope of Services	6
Selection Process	7-8
Selection Criteria	
Submittal Requirements	8-11
RFQ Response Format	11
Compensation to be Excluded	12
Selection Schedule	12
Reference and Signature Sheet	13-14
Oak Brook Park District Information	15-16
Wetland DelineationReport	17-55
Bridge Condition and Analysis Report	56-117

OAK BROOK PARK DISTRICT 1450 Forest Gate Road Oak Brook, IL 60523

RFQ NOTICE

REQUEST FOR LETTERS OF INTEREST, STATEMENTS OF QUALIFICATIONS AND PERFORMANCE DATA FOR PROFESSIONAL SERVICES

The Oak Brook Park District (the "District") is soliciting for letters of interest, statements of qualifications, and performance data from qualified professional civil engineers to provide Phase II engineering and construction oversight for a bridge replacement, low-head dam replacement, and streamway/streambank improvements at Ginger Creek in Central Park.

The Request for Qualifications and Submittal Requirements (the "RFQ") for the Project is on file and available for pick up at the District's Administration Office, in the Family Recreation Center at 1450 Forest Gate Road, Oak Brook, IL 60523, or by PDF format from the District's website (www.obparks.org/bids).

The RFQ will be available Monday – Friday, 9:00 a.m. – 5:00 p.m., beginning Monday, June 5, 2023 through Friday June 16, 2023.

Responses to the RFQ shall be submitted in a sealed, opaque envelope and marked with "Submittal for Professional Services for Central Park Bridge Project". Responses must be received on or before 3:00 p.m. on Friday, June 16, 2023 in the Administrative Office of the Oak Brook Park District, 1450 Forest Gate Road, Oak Brook, IL 60523. No e-mail or fax submittals will be accepted.

The firm(s) selected must comply with applicable federal, state and local laws, rules, regulations and executive orders including but not limited to those pertaining to equal employment opportunity.

The selection of the successful firm(s) shall be at the District's discretion and shall be made pursuant to the provisions of the Local Government Professional Services Selection Act, 50 ILCS 510/0.01, *et seq.* The District reserves the right to reject any and all proposals, or to accept any portion of the proposal, to waive any formality, technicality or irregularity in any proposal, and to be the sole judge of the value and merit of the proposals offered. Such decisions by the District shall be final.

Laure Kosey Executive Director Oak Brook Park District

Oak Brook Park District

1450 Forest Gate Road • Oak Brook, IL 60523-2151 Phone: 630-990-4233 • Fax: 630-990-8379 • www.obparks.org

June 5, 2023

Re:	Request for Letters of Interest and Statements of Qualifications for Professional Services ("RFQ")
Deadline:	June 16, 2023 at 3:00 p.m.
Location:	Oak Brook Park District Administration Office Family Recreation Center 1450 Forest Gate Road Oak Brook, IL 60523

Dear Vendor:

Enclosed you will find information relating to the Oak Brook Park District's (the "District" or the "District's") request for letters of interest and statements of qualifications from qualified professional civil engineers to provide Phase II engineering and construction oversight for a bridge replacement, low-head dam replacement, and streamway/streambank improvements at Ginger Creek in Central Park.

Enclosed is the project understanding. Please submit one (1) original and two

(2) copies of your proposal to the location and by the deadline set forth above. Proposals received after the deadline set forth above will not be considered. It is the sole responsibility of the respondent to ensure that the District has received the proposal on time. Electronic or facsimile transmission will not be accepted.

For further information regarding the RFQ, please contact Laure Kosey, Executive Director, at 630-645-9535.

OAK BROOK PARK DISTRICT

Laure Kosey, Executive Director

OAKBROOK PARK DISTRICT 1450 Forest Gate Road Oak Brook, IL 60523

REQUEST FOR LETTERS OF INTEREST AND STATEMENTS OF QUALIFICATIONS FOR PROFESSIONAL SERVICES

The Oak Brook Park District (the "District") is soliciting letters of interest and statements of qualification ("RFQ") from qualified professional civil engineers who can provide Phase II engineering and construction oversight for a bridge replacement, low-head dam replacement, and streamway/streambank improvements at Ginger Creek in Central Park (the "Project").

The selection of the successful firm(s) for the Project shall be at the District's discretion and shall be made pursuant to the provisions of the Local Government Professional Services Selection Act, 50 ILCS 510/0.01, *et seq.* The District reserves the right to reject any and all proposals, or to accept any portion of the proposal, to waive any formality, technicality or irregularity in any proposal, and to be the sole judge of the value and merit of the proposals offered. Such decisions by the District shall be final.

A. <u>PROJECT UNDERSTANDING</u>

The Oak Brook Park District has recently made significant improvements to Central Park. Ginger Creek bisects Central Park east/west through the entire property. The recent improvements are located on the north side of Ginger Creek and have been partially funded through State of Illinois grants. The Park District desires to improve accessibility for both pedestrians and maintenance vehicles from the south to the north section of Central Park over Ginger Creek. Currently, a concrete/asphalt/steel pedestrian walk connects the two sections at a low head dam located over Ginger Creek. The low head dam is constructed of gabion baskets with the low flow concrete channel covered with a steel grate. Frequently, during heavy rainfall events, the path is impassible due to high water conditions. Additionally, the high velocity of the water flowing over the dam is a safety concern, and the crossing is not ADA accessible.

The Park District hired Engineering Resource Associates to complete a phase I analysis of the existing bridge, gabion weir structures, Ginger Creek, and surrounding wetlands/shoreline. At the conclusion of the Phase I analysis, The Park District was presented with several options for bridge replacement while maintaining the integrity of the creek, and improving the surrounding wetlands area.

Upon review with the team at Engineering Resource Associates, the Park District ultimately decided to pursue what is referred to as option "**3A**" in the following documents. This option includes removal and replacement of the existing low-head dam, replacement of the existing bridge with a pre-fabricated structure, removal of the gabion weir rock baskets and adjacent sheet piling, stream bank grading, and construction of step pools east of the new bridge/dam to improve the creek design and improve fish passage.

The Park District applied for a Community Funding Grant for this project, and has received preliminary approval for the funding. However, the Park District anticipates that it will not find out if final approval is granted until late 2023 or early 2024. The Park District is requesting proposals from qualified engineering firms who can provide Phase II engineering through completion. Page 5

B. <u>SCOPE OF SERVICES</u>

The information described below shall be the expectations and requirements of the engineering firm that is awarded the project.

Existing Conditions

Topographic survey - Preliminary topographic features shall be obtained for the project site.

Wetland Delineation – A wetland delineation for the project area has previously been prepared and will be made available for review.

Structural Plans for Bridge and Dam

Structural plans shall be developed and reviewed for the new low-head dam and replacement bridge.

Updated Cost Estimates for the Project

The existing cost estimates for option "3A" shall be reviewed, updated, and discussed with the owner.

Permitting Requirements

A summary of the anticipated permitting requirements associated with this project is included in the Phase I report. The engineering firm shall be responsible for pursuing and obtaining the necessary permits for this project. Any requested changes made by permit review officials shall be made by the Engineer without any additional cost to the District.

Construction Documents and Bidding

Engineer shall prepare complete Construction Documents for the Project. The Construction Documents shall consist of Engineered Drawings, Specifications, and other necessary documents as required to seek proposals/bids from qualified General Contractors. Engineering firm will assist the owner with bid reviews and recommendations.

Construction Administration

Firms will be expected to provide resident engineers, architects, inspectors and any other technical personnel necessary to observe, monitor and document a contractor's progress on a project from the start of field operations to final completion.

C. <u>SELECTION PROCESS</u>

The District will select firms on a Quality Based Selection process. The selection process will be made in accordance with the Local Government Professional Services Selection Act, 50 ILCS 510/1 *et seq.* (the "Act").

1. <u>Evaluation of Written Submissions</u>:

An evaluation committee, consisting of District staff members, will review and evaluate all written responses to the RFQ in accordance with the general evaluation criteria set forth below (Selection Criteria) and based on such other information and matters as the committee deems necessary or desirable to determine the qualifications, responsibility, and suitability of each firm submitting a proposal in response to the RFQ.

After conducting such review and making such evaluations, the District may select not less than three (3) qualified firms (unless the District receives less than 3 submissions) to proceed to the oral interview stage of the selection process (a "Finalist" and/or the "Finalists"), or may reject all proposals.

2. <u>Oral Interview</u>:

If one or more Finalists are selected, an oral interview or interviews may be conducted by the District. At the interview, each Finalist shall be required to explain its submission in detail, including a full discussion of how its approach to the Project satisfies the general evaluation criteria set forth below (Selection Criteria). In addition, each Finalist shall be required to answer questions posed by the District. Oral interviews may be tape recorded.

Upon completion, review and consideration of the oral interviews, the District may request additional information from one or more of the Finalists if deemed necessary or desirable by the District to assist it in evaluating a Finalist's qualifications for the Project.

3. <u>Ranking:</u>

Based upon the written submissions, oral interviews and any supplementary information submitted in response to the District's request, and based upon the general evaluation criteria listed in below (Selection Criteria), such other criteria as the District determines appropriate, and such independent investigation (e.g. discussions with previous clients) as the District determines to be necessary or desirable to assist it in evaluating a Finalist's qualifications, the District will rank the Finalists in the order of their qualifications for the Project.

4. <u>Negotiations:</u>

Following such ranking, the District will contact the highest ranking firm and attempt to negotiate a contract for the services at a fair and reasonable compensation taking into consideration the Project budget and the estimated value, scope, complexity and nature of the services to be rendered.

If fewer than three (3) submissions are received and the District determines that the firm(s) which did submit statements of interest is (are) qualified, the District may negotiate a contract with any such firm(s) in accordance with the requirements of the Act.

The Oak Brook Board of Park Commissioners will make the final selection of the architect/engineer for each Project.

D. <u>SELECTION CRITERIA</u>

The evaluation committee shall review the responses to the RFQ for the Project. The engineer for the Project will be selected based on the following criteria (in no order):

- 1. Qualifications and experience of firm for the Project;
- 2. Qualifications and experience of staff assigned to the District;
- 3. Experience/Performance -- Review of past performance on public projects, evaluations of references, etc;
- 4. Method and/or approach to the Project;
- 5. Expressed understanding of issues related to the Project; and

E. <u>SUBMITTAL REQUIREMENTS</u>

Submissions for each Project shall include:

1) Letter of Interest

A letter of interest from the firm, introducing any team members, highlighting the team's proposal for performing the services in accordance with the Project description and meeting the results to be achieved as described in the RFQ.

Provide a cover letter indicating your firm's understanding of the requirements of the specific job proposal. The letter should be a brief formal letter from the prospective firm that provides information regarding the firm's interest in and ability to perform the requirements of the RFQ.

A duly authorized representative of the firm must sign the letter in response to the RFQ. The cover letter should be on letterhead and state the legal name of the firm, phone number, fax number, mailing address and e-mail address.

2) Firm History and Experience

- a) Please give a brief history and description of your firm (years in business, type of ownership, type of organization, size of firm, professional affiliations, and mission/vision). Firm will have no less than five (5) years actual business experience in engineering services, with not less than two (2) years performing work for public agencies.
- b) Provide an organization chart graphically depicting the staff to be assigned to the specific Project.
- c) Please include resumes of all key personnel to be assigned to the specific Project, which should include, but is not limited to: years of experience, degrees, licensure, and etcetera. Attach any certifications, awards, or training that will assist in qualifying your firm for the Project.
- d) Provide documentation of firm's licensure to practice engineering services in the State of Illinois. List all in-house design disciplines that your firm provides.
- e) Submit descriptions for similar projects your firm has worked on and list your firm's role for each project. List at least three (3) of the firm's recent project references for projects of a similar scope and size that have been completed within a similar timeframe. Provide performance data on these similar projects and describe why they are effective. Experience with park district and other units of local government, non-for-profit or other non-commercial clients is preferred. Grant funding experience for similar projects is preferred. During the interview process we will expect performance data for previous work on the following:
 - Project delivery method;
 - Start and end dates of the project and start and end dates of your services for the project; the targeted substantial and final completion dates for the project and the actual dates the project was substantially complete and finally complete and if the targeted dates were not met, why not;
 - The project budget and whether the project was completed within budget and if not, why not; number and scope (dollar amount/time extension) of change orders and reasons for change orders;
 - Disputes on the project (including without limitation disputes between your firm and the Owner or Owner's Representative, your firm and the Construction Manager, or your firm and a contractor or material supplier) and with respect to each dispute, describe the nature of the dispute in detail and how the dispute was resolved. Your information

should include, but not be limited to any litigation, mediation or arbitration proceedings, work suspension or stoppage and suspension or termination of your services.

- f) Provide a list of any projects in the past 3 years that were not completed.
- g) Provide at least three (3) references for any *sub-consultants* that will be involved, with *current* addresses, principal client representatives, phone numbers and email addresses.

3) Financial and Legal

- a) Provide a copy of your firm's most recent audited financial statements.
- b) Provide banking and insurance references (include name, titles and contact information).
- c) A summary of all claims, litigation, administrative proceedings, arbitration or mediation which has been made against your firm, any of its principals and/or staff within the last five (5) years related to construction, architectural design or other professional services, or business activities. The summary should include claims whether or not a lawsuit was filed or if the claim, the amount of the claim, the type of project and services involved and the resolution of the claim.

4) Firm's Methodology/Approach to the Project

- a) Discuss your firm's role, methodology and approach to the scope of services. Firms may suggest different approaches to achieving the objectives.
- b) Please provide a description of your team's approach to value engineering, efficient permitting, and working with other consultants.
- c) Describe how time will be allocated. Be precise about the division of responsibility.
- d) Describe your typical approach to construction observation and administration, including but not limited to your recommended anticipated frequency of site visits for this Project and what you will do during those site visits.

e) Describe post construction services rendered, if any and whether such services are included as part of basic services.

5) The firm's capability to complete a project on schedule.

- a). Provide an outline work plan and tentative schedule for the specific Project;
- b) Break down work plan/timeline by task.
- c) Discuss your firm's method/approach for controlling the schedule of a project.

d) Provide information on your team's current and planned workload and your ability to complete the Project within the desired timeline. Include a statement regarding the key personnel listed in this submission and their availability for the duration of the Project.

6) References/Signature Sheet

On the Reference and Signature sheet included, provide three (3) recent references for similar work. The list shall include the client's name, address, telephone number, project title and description, project location and the contact person.

Without a duly signed and executed Reference and Signature Sheet, the firm's submittal in response to this RFQ will not be considered.

7) **RFQ Response Format**

- a) Submit one (1) original and two (2) copies of your response for the Project, including all required forms and supporting documentation, with the original copy of the submittal clearly labeled "Original."
- b) Submissions must be presented on 8 ¹/₂" x 11" paper in a loose leaf folder or binder and inserted in a separate sealed, opaque envelope and labeled as "Submittal for Professional Services for Central Park Bridge Project".
- c) A cover sheet containing the name of the firm making the proposal including the name, address, and telephone number of a specific contact person for this RFQ.
- d) A Table of Contents: All requested information must be presented in the order as listed within the Submittal Requirements.
- e) Any supplemental information you wish to provide. These additional supporting documents **should not exceed ten pages**. All submittals shall be bound and on 8.5" x 11" paper. The contents of the response to this RFQ by the successful firm will be referenced in any contract awarded for this Project.
- f) Submittals become the property of the District. The cost of preparation of proposals shall be the sole obligation of the submitting firms; the District is not liable for any costs incurred by submitting firms. The District, at its sole discretion, may waive any informalities and act in what it determines to be in the District's best interest. Submissions will not be returned to the individual or the company that has submitted the proposal.

Submissions are due on or before June 16, 2023 at 3:00 p.m. at the following address: Oak Brook Park District Administration Office, Family Recreation Center, 1450 Forest Gate Road, Oak Brook, IL 60523.

F. COMPENSATION TO BE EXCLUDED

In accordance with the Local Government Professional Services Selection Act, 50 ILCS 510/1 *et. seq.*, please ensure that submissions and any related materials do not include estimates of costs or proposals in terms of dollars, hours required, percentage of construction cost, or any other measure of compensation related to the Project. Any submission containing cost estimates or other compensation related figures will be considered non-responsive and will not be considered by the District.

G. SELECTION SCHEDULE

RFQ available to the Public	June 5, 2022
Letter of Interest/Statement of Qualifications due	June 16, 2023 3:00 p.m.
Selection of "Short List" for interviews	June 20, 2023
Interviews with top rated firms	June 21-26, 2023
Recommendation of Firm(s)/Approval by Board of Commission	oners July 17, 2023

Request for Qualifications for Professional Services Reference and Signature Sheet

All firms providing a submittal for "Professional Services" shall include the Reference and Signature sheet completed and signed by the individual providing the submittal in behalf of the firm.

Please provide three (3) recent references for similar work. The list shall include the client name, address, telephone number, project title and description, project location and the contact person

Reference # 1

Client Name:
Contact:
Address:
Telephone Number:
Project title:
Description of Project:
Project Location:
Reference # 2
Client Name:
Contact:
Address:
Telephone Number:
Project title:
Description of Project:
Project Location:

Reference # 3

Client Name:			
Contact:			
Address:			
Telephone Number:			
Project title:			
Description of Project:			
Project Location:			
Submitted by:			
Name of Firm:			
Address of Firm:			
City:	State:	Zip	
Submitter's Name:			
Telephone:			

Request for Qualifications for Professional Services – Oak Brook Park District Information

The Village of Oak Brook, nestled in the eastern suburbs of DuPage County is located near major expressways and is just minutes away from downtown Chicago. This successful upscale community is rich in history and yet offers the amenities that modern families, singles and retirees desire.

The population of Oak Brook averages around 8,091 residents that swells to a population of approximately 100,000 each day as Oak Brook is the headquarters location for 50 of the Fortune 500 companies.

The people of the Village of Oak Brook are fortunate to have the Oak Brook Sports Core, with 269 acres of open green space and sports facilities, which historically has featured gold, polo, trap, skeet, and game shooting; field and target archery, and miles of bridle trails. The Sports Core property now includes the Oak Brook Bath and Tennis Club, Oak Brook Golf Club, the Oak Brook Polo Grounds and open fields. The Sports Core property is zoned Conservation Recreation and is maintained by the Village of Oak Brook.

Additionally, over 390 acres of open land are maintained by the DuPage County Forest Preserve District to protect the natural ecosystem and historical sites of Graue's Mill, Ben Fuller House, and Mayslake Peabody Estate among others.

The Oak Brook Park District was created on November 5, 1962. The Park District serves the residents and corporate residents of Oak Brook, and also welcomes non-residents as well. The Oak Brook Park District owns 7 park sites, including a 40-acre nature sanctuary. In total, it controls approximately 140 acres of land.

The Oak Brook Park District features award winning facilities, parks and programs. The Park District has received the 2015 National Gold Medal Award for Excellence in Park and Recreation Management from the American Academy for Park and Recreation Administration and the National Park and Recreation Association for excellence in agency planning and management.

The Oak Brook Park District amenities include 3 recreational facilities and seven park locations as follows.

Recreational Facility	Location	Recreational Description
Family Recreation Center	1450 Forest Gate Road, Oak Brook, IL 60523	Fitness Center & indoor/outdoor Aquatic Center, Preschool Rooms, multipurpose rooms, kiln, Dance/Exercise Studios, 3 gyms, walking track
Tennis Center	1300 Forest Gate Road, Oak Brook, IL 60523	8 indoor tennis courts, 3 racquetball courts, 1 walleyball court, one table top tennis court, sauna, spa, fitness center
Central Park West	1500 Forest Gate Road Oak Brook, IL 60523	Facility used for rentals and recreational programming

Parks	Location	Acreage
Central Park	1450 Forest Gate Rd	173 Acres
	1315 Kensington Rd.	
Chillem Park	32 Yorkshire Woods	1 Acre
	Oak Brook, IL 60525	
Dorothy and Sam Dean	115 Canterberry St.	40 acres
Nature Sanctuary	Oak Brook, IL 60525	
Forest Glen Park	Wood Glen Lane & Forest	16.4 acres
	Glen St.	
Saddle Brook Park	Saddle Brook &	11 acres total (3 locations in Saddle
	Hambletonian Road	Brook subdivision)

WETLAND DELINEATION & ASSESSMENT REPORT CENTRAL PARK NORTH FIELDS

WETLAND DELINEATION & ASSESSMENT REPORT CENTRAL PARK NORTH FIELDS

WBK Project #190117

Prepared for:

Oak Brook Park District 1450 Forest Gate Road Oak Brook, Illinois, 60523

Prepared by:

Alyse Olson Environmental Resource Specialist **Reviewed by:** Natalie Paver, PWS Senior Environmental Specialist

May 31, 2019

WBK Engineering, LLC WBKEngineering.com

Part of the Mno-Brnadsen Family

St. Charles Office 116 West Main Street, Suite 201 St. Charles, IL 60174 630.443.7755 Aurora Office 8 East Galena Boulevard, Suite 402 Aurora, IL 60506 630.701.2245

WETLAND DELINEATION & ASSESSMENT REPORT CENTRAL PARK NORTH FIELDS OAK BROOK, DUPAGE COUNTY, ILLINOIS

Table of Contents

Introduction	2
Permit Requirements	2
Wetland Determination Methodology	2
Site Conditions	
Vegetation Data	5
Reference Materials	8
Conclusions	10
References	11

Appendix A: Reference Material

Exhibit 1:	Location Map	A1
Exhibit 2:	Aerial Photograph with Wetland Delineation	A2
Exhibit 3A:	National Wetlands Inventory Map	A3
Exhibit 3B:	DuPage County Wetlands Inventory Map	A4
Exhibit 4:	Soil Survey Map	A5
Exhibit 5A:	USGS Topographic Map	A6
Exhibit 5B:	Hydrologic Investigations Atlas	A7
Exhibit 6A:	Digital Flood Insurance Rate Map	A8
Exhibit 6B:	DuPage County Regulatory Flood Map	A9
Exhibit 7A-B:	Site Photographs	A10-A11

Appendix B: USACE Data Sheets

Data Point 1A:	Wetland	B1-B2
Data Point 1B:	Upland	B3-B4
Data Point 2A:	Wetland	B5-B6
Data Point 2B:	Upland	В7-В8

Appendix C: Vegetation Data

Wetland 1 Plant Community Inventory & Summary	C1
Wetland 2 Plant Community Inventory & Summary	C2
Wetland Fringe Plant Community Inventory & Summary	С3

Introduction

WBK Engineering, LLC (WBK) performed a wetland delineation of the Central Park North Fields project area in Oak Brook, DuPage County, Illinois for the Oak Brook Park District on April 22, 2019. The project area is located west of Jorie Boulevard, east of Illinois Route 83, north of Forest Gate Road, and south of Kensington Road in Central Park. The study area is centered at 41.840238°N and -87.952911° W in the W ½ of Section 26, Township 39N, Range 11E (Exhibit 1). The wetland delineation was performed in accordance with the criteria and methods established by the U.S. Army Corps of Engineers (USACE) in their <u>Corps of Engineers Wetlands Delineation Manual</u> (1987) and Midwest Regional Supplement (2010).

Based on the information obtained from the field visit, WBK identified one Waters of the U.S. (Waters 1 - Ginger Creek) with associated areas of wetland fringe and two wetlands (Wetlands 1 & 2). The delineated Waters total 5.662 on-site acres, and the delineated wetlands and wetland fringe total 0.253 on-site acres. Jake Kyrias-Gann from Burns & McDonnell verified the wetland boundaries on May 6, 2019 with Jamie Patterson, the consulting civil engineer for the Village of Oak Brook, and Alyse Olson from WBK. The wetland on site appear to connect to Ginger Creek (Waters 1). Ginger Creek flows to Salt Creek, which is a tributary of the Des Plaines River. The Des Plaines River is a Traditional Navigable Waterway regulated by the U.S. Army Corps of Engineers. Therefore, the wetlands and waters on site appear to be under the jurisdiction of the U.S. Army Corps of Engineers.

Permit Requirements

Under the current regulations, a disturbance of a jurisdictional or isolated wetland area requires a permit (USACE Letter of No-Objection, Regional Permit, Individual Permit and/or DuPage County County-Wide Stormwater and Flood Plain Permit). However, mitigation may or may not be required, depending on the overall impact (> 0.10 acres) to the wetland or Waters of the United States. This determination is at the discretion of the Chicago District Corps of Engineers.

Wetland Determination Methodology

The USACE Wetland Delineation Manual, dated January 1987, identifies the mandatory technical criteria for wetland identification. The three essential characteristics of a wetland are: 1) hydrophytic vegetation; 2) hydric soils; and 3) wetland hydrology. These characteristics are described below:

Hydrophytic Vegetation:

The hydrophytic vegetation criterion is based on a separation of plants into five basic groups:

1) Obligate wetland plants (OBL) almost always occur (estimated probability >99%) in wetlands under natural conditions;

- 2) Facultative wetland plants (FACW) usually occur in wetlands (estimated probability 67-99%), but occasionally are found in non-wetlands;
- 3) Facultative plants (FAC) are equally likely to occur in wetland or non-wetlands (estimated probability 34-66%);
- 4) Facultative upland plants (FACU) usually occur in non-wetlands (estimated probability 67-99%), but occasionally are found in wetlands (estimated probability 1-33%); and
- 5) Obligate upland plants (UPL) almost always occur (estimated probability >99%) in nonwetlands under natural conditions.

At each data point, vegetation is sampled in plots of varying size based on the type of vegetation being sampled. The following plot sizes are recommended by the 2010 Regional Supplement to the Corps of Engineers Wetland Delineation Manual for the Midwest Region:

Trees	30-ft radius
Saplings/Shrubs	15-ft radius
Herbaceous Plants	1-m² plot
Woody vines	30-ft radius

If greater than 50% of the plants present in all strata or layers of the plant community are FAC, FACW, or OBL the subject area is considered a wetland in terms of vegetation (Dominance Test). If the vegetation does not meet the requirements of the Dominance Test, the Prevalence Index (PI) should be utilized.

The PI evaluates the coverage, on a weighted basis of coverage over all strata, of the vegetation within the plot. The PI ranges between 1.0 and 5.0, with a 3.0 or less indicating hydrophytic vegetation is present. If the PI is greater than 3.0, the dominance test is failed, but if there is also a hydric soil and wetland hydrology presence, the observation of morphological adaptations by vegetation can be used to indicate that the hydrophytic vegetation criteria is met.

Morphological adaptations are changes in the structure of vegetation in response to conditions outside the normal character of the plant. These adaptations include adventitious roots, multistemmed trunks, shallow root systems developed at or near the surface, and buttressing in tree species. To meet this indicator, more than 50% of the individuals of FACU species must exhibit the morphological adaptations. Care must be given that the adaptations observed are due to wetter conditions that the species is used to as opposed to other factors such as shallow roots present because of erosion of the surface.

Hydric Soils:

Hydric soils are defined in the manual as "soils that are saturated, flooded or ponded long enough during the growing season to develop anaerobic conditions in the upper part." Hydric soil indicators are distinctive characteristics that persist in the soil during both wet and dry periods, and are used to identify hydric soils in the field. Field indicators include color, mottling, gleying, and sulfidic odor. A specific set of indicators has been developed by the USDA Natural Resource

Conservation Service (NRCS) (Field Indicators of Hydric Soils in the United States), which provides a detailed description of what characteristics must be present to be hydric. A soil meets the definition of a hydric soil if it exhibits at least one of these indicators.

Wetland Hydrology:

Indicators of hydric soil and hydrophytic vegetation typically reflect the middle and long-term conditions of a site but not the short term conditions. The wetland hydrology criterion is often the most difficult to determine because of climatological variation. Typically, the presence of water for a week or more during the growing season creates anaerobic conditions indicative of wetland hydrology. Anaerobic conditions lead to the prevalence of wetland plants. The 2010 USACE Regional Supplement for the Midwest Region provides specific indicators in four different groups for wetland hydrology:

- 1. Observation of Surface Water or Saturated Soils
- 2. Evidence of Recent Inundation
- 3. Evidence of Current or Recent Soil Saturation
- 4. Evidence from Other Site Conditions or Data

If a site exhibits 1 primary indicator or 2 secondary indicators, then it meets the hydrology criteria for a wetland.

Vegetation Data

A meander vegetation inventory was taken at the time of the field visit within the wetland and plant communities. This inventory was entered into a Floristic Quality Assessment (FQA) program, which calculates a value for the Floristic Quality Index (FQI) and Coefficient of Conservatism (C-value). The FQI gives an idea of the quality of the community being inventoried. Wilhelm and Rericha established C-values for plants to give some insight as to the overall quality of the community. Each plant species is rated on a scale of 0 to 10, 0-representing non-native or noxious species commonly found in a variety of habitats, and 10 representing plants found only under specific ecological conditions. Communities containing an abundance of plants with a low C-value suggest that these communities have been disturbed in the past. Communities containing an abundance of plants with a high C-value suggest that specific ecological conditions necessary for their survival are intact thus disturbance is probably minimal and the community maintains at least some of its original integrity.

The native C-values and native FQI values were recorded for the wetland plant communities within the project area. This analysis is required by the USACE Chicago District. These values are shown below in Table 2. The complete FQA for the wetland plant communities are located in Appendix C.

Site Conditions

The Central Park North Fields project site is an open, grassy plot used by the Oak Brook Park District for soccer fields. Ginger Creek (Waters 1) runs along the south side of the project area and contains adjacent wetland and wetland fringe communities. The project area is surrounded by residential and commercial property. The majority of the project area contains non-hydric soil (Orthents, clayey, undulating – 805B) according to the USDA SSURGO soil data (Exhibit 4). The soil surrounding Ginger Creek, however, is mapped, hydric soil (Sawmill silty clay loam, heavy till plain – 3107A). The National Wetlands Inventory (NWI) Map (Exhibit 3A) classifies Ginger Creek as freshwater pond (PUBGx). According to the DuPage County Wetlands Inventory Map (Exhibit 3B), Ginger Creek is identified as a River/Stream and Lake/Pond. The site does not contain Regulatory or Critical Wetlands according to the DuPage County Wetlands Inventory Map. The Digital Flood Insurance Rate Map (Exhibit 6A) and DuPage County Regulatory Flood Map (Exhibit 6B) show that Zone AE Floodway, Zone AE Special Flood Hazard areas, and Zone X flood areas outside of the 500-year floodplain exist within the project site. At the time of the site visit, the project area contained one Waters of the U.S., two wetlands, and two areas of wetland fringe.

Data points were taken at the time of the field visits in wetland and upland areas. At each data point, the vegetation, soil, and hydrology was observed and the details of each were recorded onto a USACE Data Form. Data points are taken to help determine the location of wetland boundaries. The information collected on-site is listed in the USACE Data Forms located in Appendix B.

See Appendix A for the Aerial Photograph with Wetland Delineation exhibit (Exhibit 2), which shows the delineated waters and wetland boundaries as well as the data point locations. Also see Appendix A for the Site Photograph Exhibits (Exhibits 7A & 7B), which show photographs of the site conditions at the time of the field visit.

Table 1: Water Summary Table

Delineated Area	Туре	On-Site Length (ft.)	On-Site Acres	NWI Classification	County Classification	Jurisdiction*	Photos
Waters 1	Ginger Creek	2,229	5.662	PUBGx	River/Stream & Lake/Pond	USACE	3 & 6

*A Jurisdictional Determination has not been completed but based on Ginger Creek's connection to Salt Creek, which connects to the Des Plaines River, USACE jurisdiction is anticipated.

Table 2: Wetland Summary Table

Delineated	Wetland	Data	On-Site	Native	Native	Mapped	NWI	County	Jurisdiction*	Photos
Area	Туре	Point	Acres	FQI	Mean C	Soil	Classification	Classification		
Wetland 1	Riparian	1A	0.201	9.24	2.67	3107A	None	None	USACE & DuPage County	1&3
Wetland 2	Riparian	2A	0.026	10.25	3.63	3107A	None	None	USACE & DuPage County	4
Wetland Fringe	Fringe	N/A	0.026	8.67	2.89	3107A	None	None	USACE & DuPage County	N/A
TOTAL			0.253							

*A Jurisdictional Determination has not been completed but based on wetlands location adjacent to Ginger Creek, USACE jurisdiction is anticipated.

The following is a description of the waters and wetlands identified during the site visit:

Waters of the US:

Ginger Creek (Waters 1) is a perennial stream that flows west to east within the project area and was delineated at the Ordinary High Water Mark (OHWM). The OHWM is established by the fluctuations of water and is indicated by physical characteristics such as a clear, natural line impressed on the bank, shelving, changes in the character of soil, destruction of terrestrial vegetation and/or the presence of litter and debris. The National Wetlands Inventory Map (Exhibit 3A) identifies Waters 1 as a Palustrine, Unconsolidated Bottom, Intermittently Exposed, and Excavated (PUBGx) freshwater pond. The DuPage County Wetlands Inventory Map (Exhibit 3B) identifies Waters 1 as a River/Stream and Lake/Pond. The Hydrologic Investigations Atlas shows the project area contains areas of historic flooding. The Digital Flood Insurance Rate Map (Exhibit 6A) identifies Waters 1 as Zone AE floodway within the project area. The DuPage County Regulatory Flood Map (Exhibit 6B) also identifies Waters 1 as a floodway area.

A plant community consisting of Great Bulrush (*Schoenoplectus tabernaemontani*), sedges (*Carex ssp.*), and Water Willow (*Justicia Americana*) was observed just east of the dam structure located in the center of Ginger Creek. The plant community was located in a small area (approximately 6'x5') where the dam structure and sea wall come together (see Photo 6). Despite the presence of hydrophytic vegetation and hydrology, this area was delineated as part of the Waters of the U.S. due to the presence of piled rock and riprap preventing a soil sample from being obtained.

Wetland 1 – Data Point 1A:

Wetland 1 is a 0.201 acre riparian wetland community located along Ginger Creek (Waters 1). Wetland 1 has a Floristic Quality Index of 9.24, a Native Mean C-value of 2.67, and a Native Mean Wetness Coefficient Value of -0.83. The delineated wetland fulfills all three indicators of a wetland; hydrophytic vegetation, hydric soils, and wetland hydrology. The dominant plant species of Wetland 1 include Spreading Bent (*Agrostis stolonifera*), Common Reed (*Phragmites australis ssp. americanus*), Cattails (*Typha ssp.*), and Willows (*Salix ssp.*). The hydrophytic vegetation indicator is met with greater than 50% of the dominant species present being FAC, FACW, and OBL and a Prevalence Index of less than or equal to 3 at Data Point 1A. The Soil Survey Map (Exhibit 4) shows the delineated area to be within the hydric soil unit Sawmill silty clay loam (3107A). Field observations verify the presence of poorly drained hydric soils with the indicators Depleted Below Dark Surface (A11), Sandy Redox (S5), Dark Surface (S7), and Depleted Matrix (F3) at Data Point 1A. Wetland hydrology is met with the presence of a High Water Table (A2) at a depth of 8 inches, Saturation (A3) at a depth of 7 inches, and Water-Stained Leaves (B9). The secondary hydrology indicators Saturation Visible on Aerial Imagery (C9) and Geomorphic Position (D2) also apply to Wetland 1.

Wetland 2 – Data Point 2A:

Wetland 2 is a 0.026 acre riparian fringe wetland community located along Ginger Creek (Waters 1). Wetland 2 has a Floristic Quality Index of 10.25, a Native Mean C-value of 3.63, and a Native Mean Wetness Coefficient Value of 0.00. The delineated wetland fulfills all three indicators of a

wetland; hydrophytic vegetation, hydric soils, and wetland hydrology. The dominant plant species of Wetland 2 include Cutleaf Coneflower (*Rudbeckia laciniata*), Black Alder (*Alnus glutinosa*), European Buckthorn (*Rhamnus cathartica*), and Wild Parsnip (*Pastinaca sativa*). The hydrophytic vegetation indicator is met with greater than 50% of the dominant species present being FAC, FACW, and OBL at Data Point 2A. The Soil Survey Map (Exhibit 4) shows the delineated area to be within the hydric soil unit Sawmill silty clay loam (3107A). Field observations verify the presence of poorly drained hydric soils with the indicator Redox Dark Surface (F6) at Data Point 2A. Wetland hydrology is met with the secondary indicators Geomorphic Position (D2) and FAC-Neutral Test (D5).

Wetland Fringe:

During the site visit, two areas of wetland fringe, totaling 0.026 on-site acres, were observed along Ginger Creek. Data points were not taken but the vegetation was recorded within the wetland fringe. The dominant plant species include Blue Vervain (*Verbena hastata*), Spreading Bent (*Agrostis stolonifera*), and Lesser Poverty Rush (*Juncus tenuis*). The wetland fringe has a Floristic Quality Index of 8.67, a Native Mean C-value of 2.89, and a Native Mean Wetness Coefficient Value of -0.44.

Reference Materials

The following materials were reviewed and utilized to assist in the field reconnaissance and completion of this report. See Appendix A for the Reference Materials (Exhibits 1 through 7B).

Location Map:

The project is located in Oak Brook, DuPage County, Illinois. The project area is located west of Jorie Boulevard, east of Illinois Route 83, north of Forest Gate Road, and south of Kensington Road in Central Park. The study area is centered at 41.840238°N and -87.952911°W in the W ½ of Section 26, Township 39N, Range 11E (Exhibit 1).

Aerial Photograph with Wetland Delineation:

A 2018-2019 ESRI World Imagery aerial photograph of the Central Park North Fields project area was reviewed to determine areas of inundation and saturation within the project boundary. Areas of inundation or saturation can indicate wetland areas. The Aerial Photograph with Wetland Delineation (Exhibit 2) shows the limits of the field delineated waters, wetlands, and data points.

National Wetlands Inventory Map and DuPage County Wetlands Inventory Map:

The U.S. Fish and Wildlife Service's National Wetlands Inventory for DuPage County (Exhibit 3A) and DuPage County's Web Mapping – Wetland Inventory Layer (Exhibit 3B) resources were reviewed to determine the location of wetland areas. The National Wetlands Inventory (NWI) Map identifies Waters 1 (Ginger Creek) as a Palustrine, Unconsolidated Bottom, Intermittently Exposed, Excavated (PUBGx) freshwater pond. The DuPage County Wetlands Inventory Map identifies Waters 1 (Ginger Creek) as a River/Stream and Lake/Pond.

It should be noted that the NWI map is only a large scale guide, actual wetland locations and types may vary.

Soil Survey Map:

The USDA SSURGO Soil Data of September 2017 (Exhibit 4) was investigated to determine the location of hydric soils on the subject site. Mapped hydric soils are indicators of potential wetland areas. The following soil types were mapped within the project area:

805B: Orthents, clayey, undulating 3107A: Sawmill silty clay loam (Hydric)

USGS Topographic Map:

The 2018 USGS 7.5 Topographic Map of the Hinsdale Quadrangle (Exhibit 5A) was reviewed for site topography and drainage. Based on the map, it can be seen that Ginger Creek runs through the project area and eventually connects to Salt Creek.

Hydrologic Investigations Atlas:

The United States Geological Survey (USGS) Hydrological Investigations Atlas for the Hinsdale Quadrangle, HA-86 of 1964 (Exhibit 5B) was reviewed to determine the historical local drainage pattern. The atlas shows that the project contains areas of historic flooding from 1952, 1954, 1957, 1960, and 1962.

Digital Flood Insurance Rate Map and DuPage County Regulatory Flood Map:

The Federal Emergency Management Agency's (FEMA) Digital Flood Insurance Rate Map (DFIRM) for DuPage County, Community Panel No. 17043C0609H effective date December 16, 2004 (Exhibit 6A) and FEMAs Regulatory Flood Map No. 17043C0179A for DuPage County effective date July 7, 2010 (Exhibit 6B) were reviewed to determine the location of regulatory floodplain and floodway within the subject site. Mapped floodplains can be indicative of wetland hydrology. Based on the maps, the waters and wetlands onsite are identified as a Zone AE Floodway. The site also contains Special Flood Hazard Areas inundated by the 1% annual chance flood event (Zone AE) and areas determined to be outside of the 500-year floodplain (Zone X).

Site Photographs:

Site Photographs (Exhibits 7A & 7B) were taken at the time of the April 22, 2019 site visit to show the areas investigated and the conditions of the site. Exhibit 7A shows Wetland 1 and the adjacent upland. Exhibit 7B shows Wetland 2, the adjacent upland, and an area of wetland vegetation growing within Waters 1.

Conclusions

WBK has identified that the Central Park North Fields project area contains one Waters of the U.S. (Waters 1 – Ginger Creek), with associated areas of wetland fringe and two wetlands (Wetlands 1 & 2). The delineated Waters total 5.662 on-site acres, and the delineated wetlands and wetland fringe total 0.253 on-site acres. This is based on field reconnaissance conducted using techniques outlined in the USACE 1987 Delineation Manual, 2010 Midwest Regional Supplement, historical maps, and aerial images depicting the condition of the site. The field determination for the presence of wetland supersedes all published maps as they are general guidance only. The wetlands are connected to Ginger Creek, which flows to Salt Creek. Salt Creek is a tributary to the Des Plaines River. The Des Plaines River is a Traditional Navigable Waterway regulated by the U.S. Army Corps of Engineers. Based on WBK's findings and the current guidelines, the wetlands and waters on site appear to be under the jurisdiction of the U.S. Army Corps of Engineers.

 $W: \label{eq:started} Wetlands \label{eq:started} Wetlan$

References

DuPage County Web Mapping – Wetland Inventory Layer. DuPage County Wetlands Inventory Map.

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. U.S. Army Corps of Engineers, Waterways Experimental Station, Vicksburg, MS, USA. Technical Report Y-87 1.

ESRI Basemaps – World Street Map. 2019. Location Map.

ESRI World Imagery. 2018-2019. Aerial Photograph with Wetland Delineation.

Federal Emergency Management Agency, Digital Flood Insurance Rate Maps, DuPage County, Illinois, Map Number 17043C0609H. 2004. Digital Flood Insurance Rate Map.

Federal Emergency Management Agency, Regulatory Flood Maps, DuPage County, Illinois, Map Number 17043C0179A. 2010. DuPage County Regulatory Flood Map.

Herman, B., Sliwinski, R. and S. Whitaker. 2017. Chicago Region FQA (Floristic Quality Assessment) Calculator. U.S. Army Corps of Engineers, Chicago, IL.

Lichvar, Robert W. and John T. Kartesz. 2012. North American Digital Flora: National Wetland Plant List, version 3.0 (https://wetland_plants.usace.army.mil). U.S. Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH, and BONAP, Chapel Hill, NC.

United States Army Corps of Engineers (USACE). 2010. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0)*. U.S. Army Engineer Research and Development Center, Vicksburg, MS.

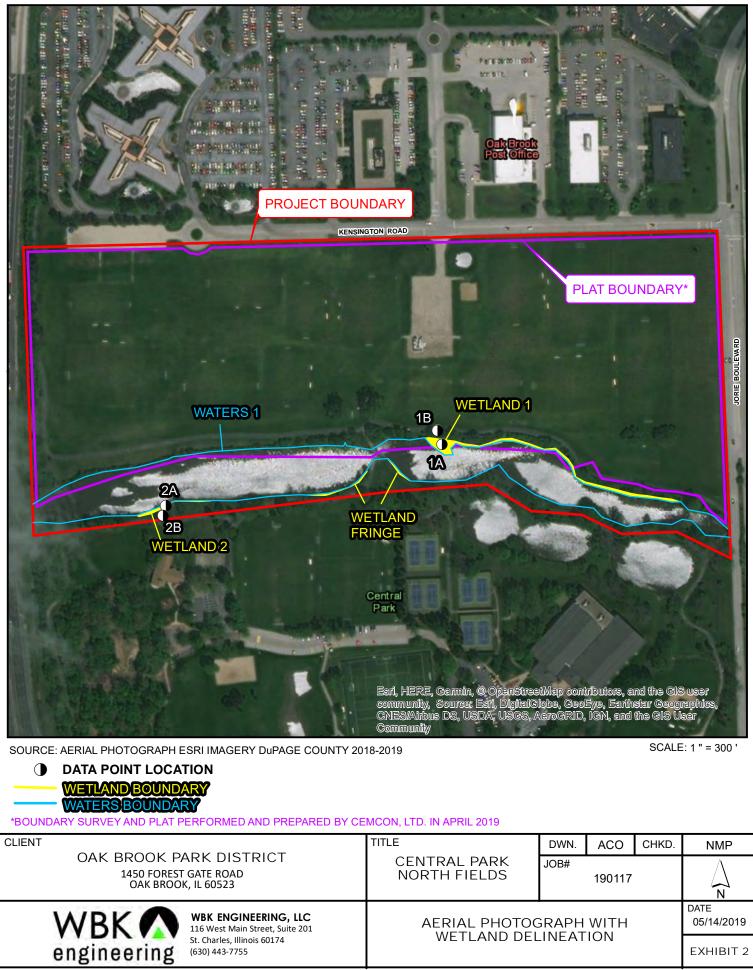
United States Department of Agriculture, Natural Resources Conservation Service (NRCS). 2010. *Field Indicators of Hydric Soils in the United States*, Version 7.0. L.M. Vasilas, G.W. Hurt, and C.V. Noble (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.

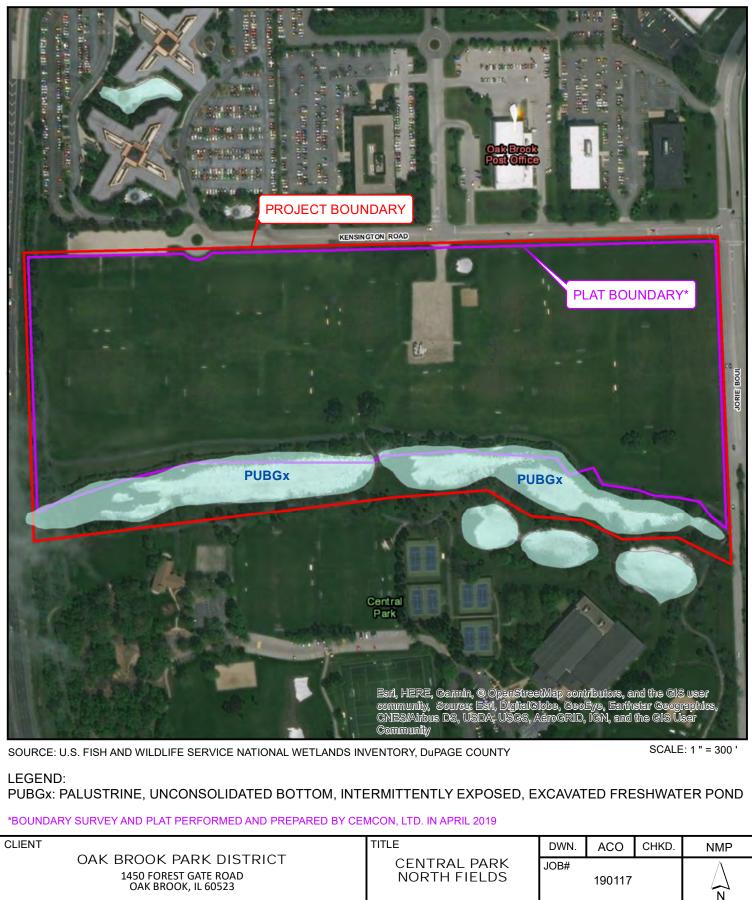
United States Department of Agriculture, Natural Resources Conservation Service (NRCS). 2012. *Field Book for Describing and Sampling Soils, Version 3.0.* ed. P. J. Schoeneberger, D. A. Wysocki, E. C. Benham, and W. D. Broderson. Lincoln, NE: National Soil Survey Center.

United States Department of Agriculture SSURGO Soil Data. 2017. Soil Survey Map.

United States Fish and Wildlife Service National Wetlands Inventory Wetlands Mapper. National Wetlands Inventory Map.

United States Geological Survey, Hinsdale Quadrangle, HA-86. 1964. Hydrologic Investigations Atlas.


United States Geological Survey 7.5' Topographic Map Hinsdale Quadrangle. 2018. USGS Topographic Map.

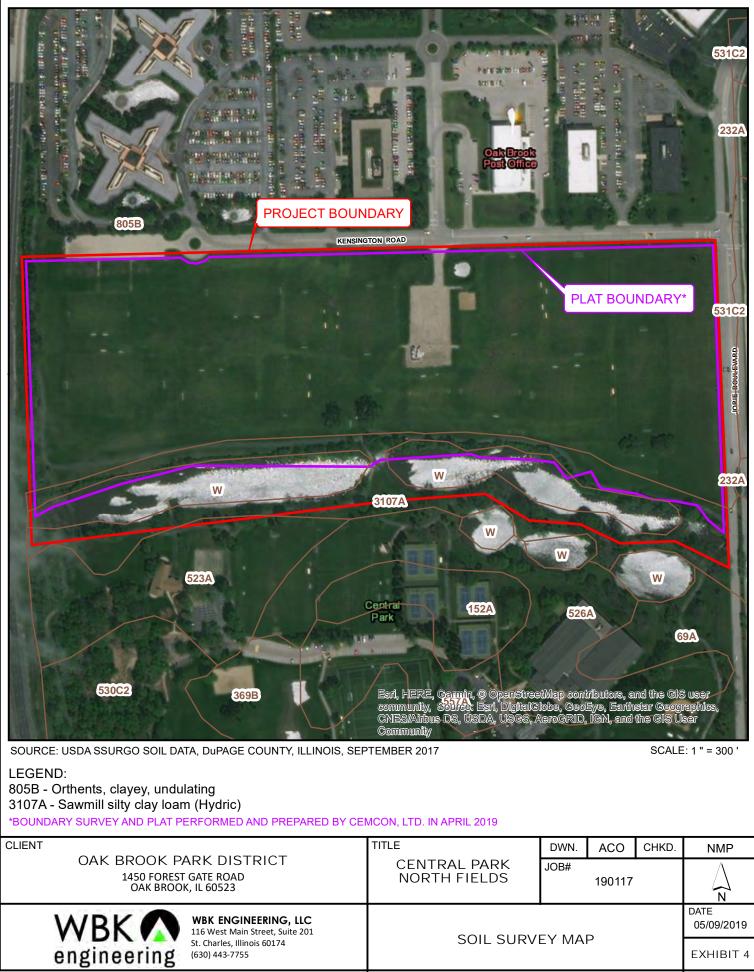

Wilhelm, G and Rericha, L. 2017. *Flora of the Chicago Region, A Floristic and Ecological Synthesis*. Indianapolis, IN: Indiana Academy of Science.

APPENDIX A

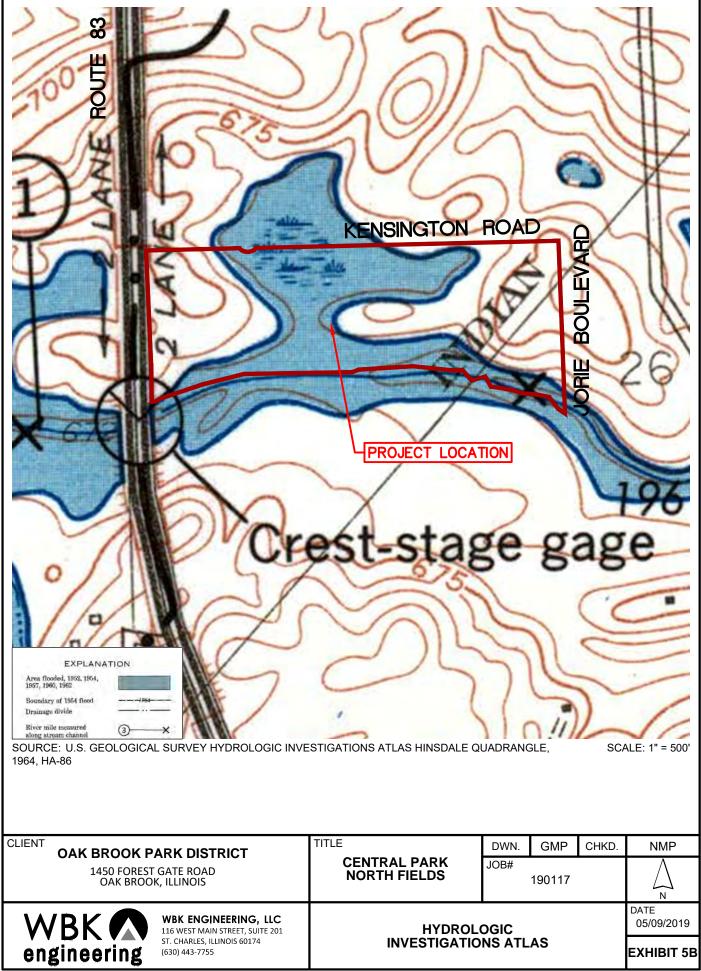
Reference Materials

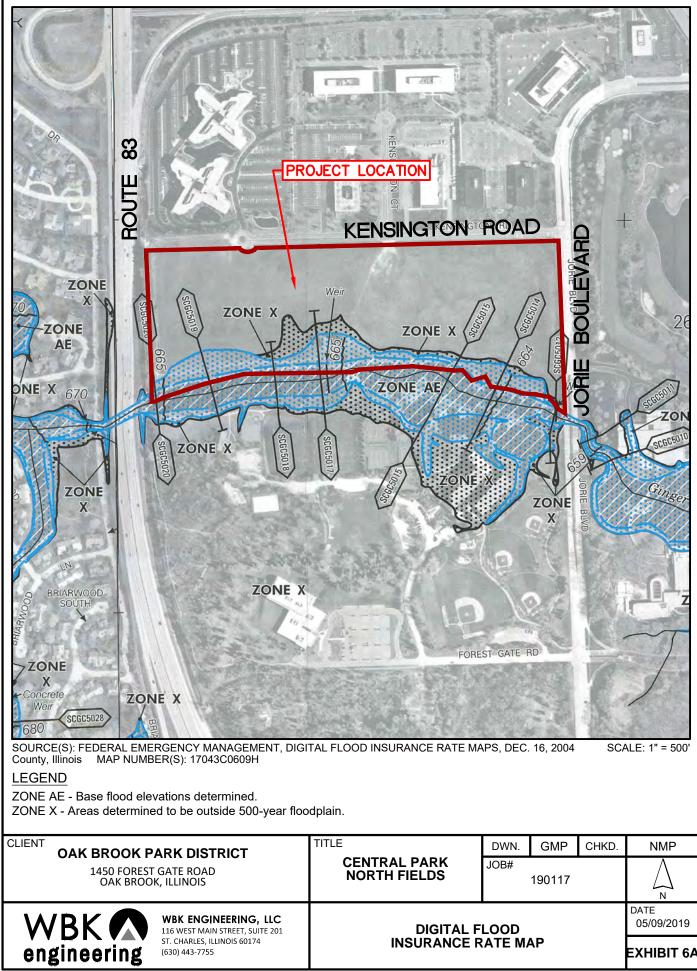
SURCE: ESRI WORLD STREET MAP LSS DESCRIPTION - W 1/2 SECTION 26, TOWNSHIP 39N LSTICE: ENDINE	PROJECT LOCATION	Harger Rd and Anger Rd and Anger Rd and Anger Rd Harger Rd Ha	ailand), munity, Esri,
LATITUDE: N041.840238 DEGREES	N, KANGE 11E		
LONGITUDE: W-087.952911 DEGREES			
CLIENT OAK BROOK PARK DISTRICT	TITLE CENTRAL PARK	DWN. ACO CHKD. JOB#	NMP
1450 FOREST GATE ROAD OAK BROOK, IL 60523	NORTH FIELDS	190117	
WBK (In the second seco			DATE 05/09/2019
engineering St. Charles, Illinois 60174 (630) 443-7755	LOCATION	EXHIBIT 1	

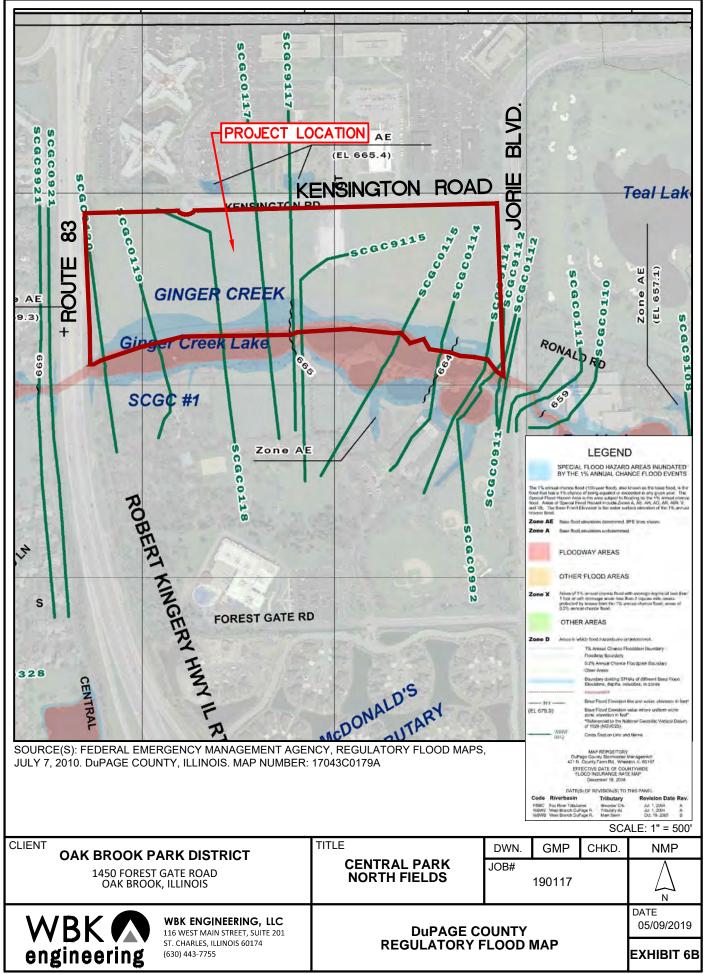
WBK 🔨	
engineering	


NATIONAL WI INVENTOR	,

DATE


05/09/2019


EXHIBIT 3A


SURCE: DuPAGE COUNTY WEB MAPPING - WETLAND INVENTORY LA LEGEND: - LAKES AND PONDS	TON RAD	tiMero, conti	AT BOUR AT BOUR ributors, an Eye, Earths IGN, and t	d the CIS tar Geog he CIS U	B NIGABI
- RIVERS AND STREAMS - CRITIC *BOUNDARY SURVEY AND PLAT PERFORMED AND PREPARED BY CEM	CAL WETLANDS				
CLIENT OAK BROOK PARK DISTRICT	TITLE	DWN.	ACO	CHKD.	NMP
1450 FOREST GATE ROAD OAK BROOK, IL 60523	CENTRAL PARK NORTH FIELDS	JOB#	190117		Δ
WBK ENGINEERING, LLC 116 West Main Street, Suite 201 St. Charles, Illinois 60174 (630) 443-7755	DuPAGE CO WETLANDS IN	DUNTY VENTO	, DRY		DATE 05/09/2019 EXHIBIT 3E

a Burtennun An Burtennun An Barten aus Barten aus	PROJECT LOCATION PROJECT LOCATION PROJEC	ARGER RD ARGER	ography aset, and . Census U.S. lational
CLIENT	TITLE	DWN. ACO CHKD.	NMP
OAK BROOK PARK DISTRICT 1450 FOREST GATE ROAD OAK BROOK, IL 60523	CENTRAL PARK NORTH FIELDS	JOB# 190117	$\sum_{\mathbf{N}}$
WBK ENGINEERING, LLC 116 West Main Street, Suite 201 St. Charles, Illinois 60174 (630) 443-7755	USGS TOPOGR	ΑΡΗΙϹ ΜΑΡ	DATE 05/09/2019 EXHIBIT 5A

			Photo 5: V	Jiew from	Data Pc	Dint 2B in	the
Photo 4: View fr in Wetland 2 loc	rom Data Point 2A bking west.		upland ad	ijacent to	Wetland	d 2 lookin	g west.
C	hoto 6: View of wetland pla ommunity growing within W ear dam and sea wall.						it is a
CLIENT OAK BROOK PARK DISTRICT 1450 FOREST GATE ROAD OAK BROOK, IL 60523			JOB # DSGN. ACO CHKD. TITLE 190117 CENTRAL PARK NORTH FIELDS			RAL PARK	NMP
WBK engineering (630		SITE PHOTOGRAPHS					

APPENDIX B

USACE Data Sheets

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: Central Park North Fields		C	ity/Cou	ounty: Oak Brook/D		'DuPage Sa		Sampling Date:	4/22/19	
Applicant/Owner:	Oak B	rook Park District					State:	IL	Sampling Point:	1A
Investigator(s): Alyse Olson			Se	ction, 1	Townsh	ip, Range:	Sec. 26	, T39N, F	R11E	
Landform (hillside, terrace, etc.): Floodplain					Local r	elief (conca	ave, conve	x, none):	Concave	
Slope (%): 0-2	Lat: 4	Lat: 41.839412			-87.952	952588			Datum: NAD83	
Soil Map Unit Name:	3107A	: Sawmill silty clay loam					N	WI class	ification: None	
Are climatic / hydrolo	ogic con	ditions on the site typical	for this time of year?	?	Yes	X N	o	(If no, ex	plain in Remarks.)	
Are Vegetation	, Soil	, or Hydrology	significantly disturbe	ed? /	Are "No	rmal Circu	mstances"	present	? Yes <u>X</u> No) <u> </u>
Are Vegetation	, Soil	, or Hydrology	naturally problemati	ic? ((If need	ed, explair	any answ	ers in Re	emarks.)	
SUMMARY OF	FINDI	NGS – Attach site n	nap showing sa	mplin	ng poi	nt locati	ons, tra	nsects	, important feat	ures, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes X Yes X	No No No	Is the Sampled Area within a Wetland?	Yes <u>X</u>	No
Remarks:					

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1. <u>N/A</u> 2				Number of Dominant Species That Are OBL, FACW, or FAC: <u>4</u> (A)
3. 4.				Total Number of Dominant Species Across All Strata: <u>6</u> (B)
5		=Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: <u>66.7%</u> (A/B)
Sapling/Shrub Stratum (Plot size: R=15ft)	10	N	540	Brevelan en la des sur des est
1. Rhamnus cathartica	<u> </u>	Yes	FAC	Prevalence Index worksheet:
2. Lonicera maackii	10	Yes	UPL	Total % Cover of: Multiply by:
3.				OBL species35 $x 1 = 35$ FACW species0 $x 2 = 0$
4 5				
o	20	=Total Cover		
Hark Stratum (Plataiza: D=1m)	20	= I otal Cover		
Herb Stratum (Plot size: R=1m)	20	Vee	OBL	
1. Scirpus atrovirens	20	Yes		
2. Poa pratensis	20	Yes	FAC	Prevalence Index = B/A = 2.74
3. Solidago canadensis	15	Yes	FACU	
4. Typha latifolia	15	Yes	OBL	Hydrophytic Vegetation Indicators:
5. Securigera varia	5	No	UPL	1 - Rapid Test for Hydrophytic Vegetation
6				X 2 - Dominance Test is >50%
7				X_3 - Prevalence Index is $\leq 3.0^{1}$
8 9.				 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
10	75	=Total Cover		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:				be present, unless disturbed or problematic.
1. <u>N/A</u>				Hydrophytic
2				Vegetation
		=Total Cover		Present? Yes X No
Remarks: (Include photo numbers here or on a separ	ate sheet.)			•

SOIL

Profile Desc	ription: (Describe	to the dept	h needed to doc	ument tl	he indica	ator or c	onfirm the absence o	of indicators.)
Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-7	10YR 2/1	85	10YR 4/6	15	С	Μ	Sandy	Prominent redox concentrations
7-16	10YR 5/1	90	10YR 5/6	10	С	М	Loamy/Clayey	Prominent redox concentrations
		·						
		·						
		·						
		·						
¹ Type: C=Co	oncentration, D=Dep	letion, RM=	Reduced Matrix, N	MS=Mas	ked Sand	Grains		PL=Pore Lining, M=Matrix.
Hydric Soil I	ndicators:						Indicators	s for Problematic Hydric Soils ³ :
Histosol	· /		Sandy Gle	-				Prairie Redox (A16)
	ipedon (A2)		X Sandy Re				Iron-M	langanese Masses (F12)
Black His			Stripped N	/latrix (Se	6)			Parent Material (F21)
	n Sulfide (A4)		X Dark Surfa	ace (S7)			Very S	Shallow Dark Surface (F22)
	Layers (A5)		Loamy Mu	-			Other	(Explain in Remarks)
2 cm Mu	. ,		Loamy Gle	-				
	Below Dark Surface	e (A11)	X Depleted I	``	,		2	
	rk Surface (A12)		Redox Da		· · /			s of hydrophytic vegetation and
Sandy Mucky Mineral (S1) Depleted Dark Surface								nd hydrology must be present,
5 cm Mu	cky Peat or Peat (S	3)	Redox De	pression	s (F8)		unless	s disturbed or problematic.
	_ayer (if observed)	:						
Туре:								
Depth (in	iches):						Hydric Soil Present	? Yes <u>X</u> No
	//www.nrcs.usda.go	Winternet/F	SE_DOCOMENTS	5/11/CS 142	2p2_0512	.95.000)	
HYDROLO	GY							
Wetland Hyd	drology Indicators:							
Primary Indic	ators (minimum of o	one is requir	ed; check all that	apply)			Secondar	y Indicators (minimum of two required)
	Water (A1)		X Water-Sta		. ,			ce Soil Cracks (B6)
	ter Table (A2)		Aquatic Fa					age Patterns (B10)
X Saturatio			True Aqua		. ,			eason Water Table (C2)
	arks (B1)		Hydrogen		. ,			sh Burrows (C8)
	t Deposits (B2)		Oxidized F	•		-	. ,	ation Visible on Aerial Imagery (C9)
	osits (B3) t or Crust (B4)		Presence		```	,		ed or Stressed Plants (D1)
	osits (B5)		Recent Iro Thin Muck			lieu Solis		orphic Position (D2) Neutral Test (D5)
· · · ·	on Visible on Aerial I	magery (B7			· /		1 AO-1	
	Vegetated Concave	0,0	, <u> </u>					
Field Observ			o) <u> </u>					
Surface Wate		es	No X	Depth (i	nches).			
Water Table		es X	No X		nches):	8		
Saturation P		es X	No	• •	nches):		Wetland Hydrolog	y Present? Yes X No
(includes cap					<i>′</i> –		, , , , , , , , , , , , , , , , , , , ,	
· · · · ·	corded Data (stream	i gauge, mo	nitoring well, aeria	al photos	, previou	s inspec	tions), if available:	
	``````````````````````````````````````			•	-	<u> </u>	,. 	
Remarks:								
Geomorphic	Position: Located a	djacent to G	inger Creek					

#### WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: Central Park North Fields			City/County: Oak Brook/DuPage				Sampling Date:	4/22/19	
Applicant/Owner:	Oak Brook F	Park District				State:	IL	Sampling Point:	1B
Investigator(s): Alyse Olson			Section,	Township, Range	e: <u>Sec. 26</u> ,	, T39N, R	11E		
Landform (hillside, te	rrace, etc.):	Fop of slope			Local relief (con	cave, conve	x, none):	Convex	
Slope (%): 0-2 Lat: 41.839493			Long:	ong: -87.952614 Datum			Datum: NAD83		
Soil Map Unit Name:	3107A: Saw	mill silty clay loam			NWI classification: None				
Are climatic / hydrolo	gic conditions	s on the site typical	for this time of ye	ar?	Yes X	No	(If no, ex	olain in Remarks.)	
Are Vegetation	, Soil,	or Hydrology	significantly distu	urbed?	Are "Normal Circ	umstances"	present?	Yes <u>X</u> No	)
Are Vegetation	, Soil,	or Hydrology	naturally problem	natic?	(If needed, expla	iin any answ	ers in Re	marks.)	
SUMMARY OF F	INDINGS	<ul> <li>Attach site m</li> </ul>	ap showing	sampli	ng point loca	tions, tra	nsects,	, important feat	ures, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes Yes	No NoX NoX	Is the Sampled Area within a Wetland?	Yes	No_X_
Remarks:					

#### **VEGETATION** – Use scientific names of plants.

Tree Stratum (Plot size: R=30ft )	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
		_ <u> </u>		
1. Rhamnus cathartica	30	Yes	FAC	Number of Dominant Species That
2. Acer negundo	10	Yes	FAC	Are OBL, FACW, or FAC: <u>3</u> (A)
3				Total Number of Dominant Species
4				Across All Strata: 5 (B)
5				Percent of Dominant Species That
	40	=Total Cover		Are OBL, FACW, or FAC: <u>60.0%</u> (A/B)
Sapling/Shrub Stratum (Plot size: R=15ft	)			
1. Rhamnus cathartica	40	Yes	FAC	Prevalence Index worksheet:
2.				Total % Cover of: Multiply by:
3.				OBL species 0 x 1 = 0
4.				FACW species 0 x 2 = 0
5.				FAC species 80 x 3 = 240
		=Total Cover		FACU species 20 x 4 = 80
Herb Stratum (Plot size: R=1m )	-			UPL species $0 \times 5 = 0$
1. Dipsacus fullonum	10	Yes	FACU	Column Totals: 100 (A) 320 (B)
2. Solidago altissima	10	Yes	FACU	Prevalence Index = B/A = 3.20
3				
4.				Hydrophytic Vegetation Indicators:
5.				1 - Rapid Test for Hydrophytic Vegetation
6				X 2 - Dominance Test is >50%
7.				$3 - Prevalence Index is \leq 3.0^{1}$
				4 - Morphological Adaptations ¹ (Provide supporting
0				data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
10	20	=Total Cover		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:	)			be present, unless disturbed or problematic.
1. <u>N/A</u>				Hydrophytic
2				Vegetation
		=Total Cover		Present? Yes X No
Remarks: (Include photo numbers here or on a separ	rate sheet.)			

SOIL

Profile Desc Depth	cription: (Describe Matrix	to the dep		ument t x Featur		ator or c	onfirm the absence	of indicators.)
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-15	10YR 2/1	100	- ( /				Loamy/Clayey	
			10YR 5/8	20				Drominant raday concentrations
15-18	10YR 2/1	80	10YR 5/8	20	C	Μ	Loamy/Clayey	Prominent redox concentrations
¹ Type: C=C	oncentration, D=Dep	letion RM=	Reduced Matrix	MS=Mas	ked Sand	Grains	² Location	: PL=Pore Lining, M=Matrix.
Hydric Soil				10-11103	Ked Oand			rs for Problematic Hydric Soils ³ :
Histosol			Sandy Gle	eved Mat	rix (S4)			st Prairie Redox (A16)
	vipedon (A2)		Sandy Re	-				Manganese Masses (F12)
Black His			Stripped N					Parent Material (F21)
	n Sulfide (A4)		Dark Surfa					Shallow Dark Surface (F22)
	Layers (A5)		Loamy Mu	• •	eral (F1)			r (Explain in Remarks)
2 cm Mu			Loamy Gle	-				
	Below Dark Surface	e (A11)	Depleted I	-				
	irk Surface (A12)		Redox Da	`	'		³ Indicator	rs of hydrophytic vegetation and
	lucky Mineral (S1)		Depleted I		· · /			ind hydrology must be present,
						ss disturbed or problematic.		
	Layer (if observed):	,			( )			•
Type:	Layer (il observeu).							
Depth (ir	ches):						Hydric Soil Present	t? Yes No X
Remarks:	iciles).						Thyunc Son Tresen	
	//www.nrcs.usda.go		_					
HYDROLO	GY							
Wetland Hyd	drology Indicators:							
Primary India	cators (minimum of o	one is requi	red; check all that	apply)			Seconda	ry Indicators (minimum of two required)
Surface	Water (A1)		Water-Sta	ined Lea	aves (B9)		Surfa	ace Soil Cracks (B6)
High Wa	ter Table (A2)		Aquatic Fa	auna (B1	3)		Drain	nage Patterns (B10)
Saturatio	. ,		True Aqua	tic Plant	is (B14)		Dry-S	Season Water Table (C2)
Water M	arks (B1)		Hydrogen	Sulfide (	Odor (C1)	)	Cray	fish Burrows (C8)
Sedimen	t Deposits (B2)		Oxidized F	Rhizosph	eres on l	_iving Ro	oots (C3) Satu	ration Visible on Aerial Imagery (C9)
	osits (B3)		Presence	of Reduo	ced Iron (	(C4)	Stun	ted or Stressed Plants (D1)
	t or Crust (B4)		Recent Irc			lled Soils		norphic Position (D2)
	osits (B5)		Thin Muck		( )		FAC-	Neutral Test (D5)
	on Visible on Aerial I	0,1	, <u> </u>					
Sparsely	Vegetated Concave	e Surface (E	38)Other (Exp	olain in F	Remarks)			
Field Obser	vations:							
Surface Wat	er Present? Ye	es	No <u>X</u>	Depth (i	nches):			
Water Table			No <u>X</u>	Depth (i	· · _			
Saturation P		es	No <u>X</u>	Depth (i	nches):		Wetland Hydrolog	gy Present? Yes No X
(includes cap								
Describe Re	corded Data (stream	gauge, mo	onitoring well, aeria	al photos	, previou	s inspect	tions), if available:	
Remarks:								

#### WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: Central Park North Fields			City/County: Oak Brook/DuPage					Sampling Date:	4/22/19	
Applicant/Owner:	Oak Brook F	Park District				5	State:	IL	Sampling Point:	2A
Investigator(s): Alyse Olson			Section, Township, Range: Sec. 26, T39N, R11E					R11E		
Landform (hillside, te		Local relief (c	oncave	, conve	k, none):	Convex				
Slope (%): 0-2 Lat: 41.838879			Long:	ng: <u>-87.955725</u> Datum: <u>NAD8</u> 3				Datum: NAD83		
Soil Map Unit Name:	3107A: Saw	mill silty clay loam			NWI classification: None					
Are climatic / hydrolo	gic condition	s on the site typical	for this time of ye	ear?	Yes X	No		(If no, ex	plain in Remarks.)	
Are Vegetation	, Soil	, or Hydrology	significantly dist	urbed?	Are "Normal C	Circums	tances"	present?	Yes <u>X</u> No	)
Are Vegetation	, Soil,	, or Hydrology	naturally problen	natic?	(If needed, ex	plain ar	ny answe	ers in Re	marks.)	
SUMMARY OF F	INDINGS	- Attach site m	nap showing	sampli	ng point lo	catior	ns, tra	nsects	, important feat	ures, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes X Yes X	No No No	Is the Sampled Area within a Wetland?	Yes <u>X</u>	No
Remarks:					

#### **VEGETATION** – Use scientific names of plants.

	Absolute	Dominant	Indicator		
Tree Stratum (Plot size: R=30ft )	% Cover	Species?	Status	Dominance Test worksheet:	
1.     Acer negundo       2.	10	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:4 (A	۹)
3.				Total Number of Dominant Species	
4.				Across All Strata: 5 (E	3)
5				Percent of Dominant Species That	
	10	=Total Cover		Are OBL, FACW, or FAC: 80.0% (A	\/B)
Sapling/Shrub Stratum (Plot size: R=15ft	)				
1. Rhamnus cathartica	20	Yes	FAC	Prevalence Index worksheet:	
2. Alnus glutinosa	15	Yes	FACW	Total % Cover of: Multiply by:	
3.				OBL species 0 x 1 = 0	
4.				FACW species 35 x 2 = 70	
5.				FAC species 30 x 3 = 90	
	35	=Total Cover		FACU species 30 x 4 = 120	
<u>Herb Stratum</u> (Plot size: R=1m )				UPL species 15 x 5 = 75	
1. Rudbeckia laciniata	20	Yes	FACW	Column Totals: 110 (A) 355 (E	3)
2. Pastinaca sativa	15	Yes	UPL	Prevalence Index = B/A = 3.23	
3. Dipsacus fullonum	10	No	FACU		
4. Thalictrum dioicum	5	No	FACU	Hydrophytic Vegetation Indicators:	
5. Allium canadense	5	No	FACU	1 - Rapid Test for Hydrophytic Vegetation	
6. Solidago altissima	5	No	FACU	X 2 - Dominance Test is >50%	
7. Monarda fistulosa	5	No	FACU	3 - Prevalence Index is ≤3.0 ¹	
8.				4 - Morphological Adaptations ¹ (Provide suppo	orting
9.				data in Remarks or on a separate sheet)	_
10				Problematic Hydrophytic Vegetation ¹ (Explain)	)
	65	=Total Cover		¹ Indicators of hydric soil and wetland hydrology mu	ist
Woody Vine Stratum (Plot size:	)			be present, unless disturbed or problematic.	
1. <i>N/</i> A				Hydrophytic	
2.				Vegetation	
		=Total Cover		Present? Yes X No	
Remarks: (Include photo numbers here or on a sepa	rate sheet.)				

SOIL								Sampling Poi	nt: 2A
Profile Desc	ription: (Describe t	o the dept	h needed to doc	ument th	ne indica	tor or o	confirm the absence of	of indicators.)	
Depth	Matrix		Redo	x Feature	es				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remark	S
0-5	10YR 2/1	100					Loamy/Clayey		
5-11	10YR 2/1	80	10YR 4/2	15	D	М	Loamy/Clayey		
			10YR 5/8	5	С	PL		Prominent redox co	oncentrations
11-19	10YR 2/1	50	10YR 4/2	20	D	М	Loamy/Clayey		
			10YR 5/1	20	D	M			
			10YR 5/8	10	<u> </u>	PL		Prominent redox co	ncentrations
			1011( 3/0						ncentrations
	ncentration, D=Deple	ation RM-F	 Reduced Matrix N		ed Sand	Grains		: PL=Pore Lining, M=M	latrix
Hydric Soil I			Reduced Matrix, N	13-Iviasi	leu Sanc	Grains		rs for Problematic Hyd	
Histosol (			Sandy Gle	ved Matr	ix (S4)			t Prairie Redox (A16)	
	ipedon (A2)		Sandy Red	-				Manganese Masses (F1	2)
Black His			Stripped M		i)			Parent Material (F21)	,
	n Sulfide (A4)		Dark Surfa	ace (S7)			Very	Shallow Dark Surface (I	F22)
Stratified	Layers (A5)		Loamy Mu	cky Mine	eral (F1)		Other	r (Explain in Remarks)	
2 cm Mu	ck (A10)		Loamy Gle	eyed Mat	rix (F2)				
Depleted	Below Dark Surface	(A11)	Depleted N	Aatrix (F3	3)				
Thick Da	rk Surface (A12)		X Redox Dar		• •			rs of hydrophytic vegetat	
	ucky Mineral (S1)		Depleted E		• • •			ind hydrology must be p	
5 cm Muo	cky Peat or Peat (S3)		Redox Dep	pressions	s (F8)		unles	ss disturbed or problema	itic.
	ayer (if observed):								
Туре:			_						
Depth (in	ches):						Hydric Soil Present	t? Yes <u>X</u>	<u> </u>
	n is revised from Mid //www.nrcs.usda.gov/	-						s of Hydric Soils, Versio	n 7.0, 2015
HYDROLO	GY								
Wetland Hyd	Irology Indicators:								
Primary Indic	<u>ators (minimum of or</u>	ne is require	ed; check all that :	apply)			Secondar	ry Indicators (minimum o	<u>of two required)</u>
	Vater (A1)		Water-Stai		• • •			ace Soil Cracks (B6)	
	er Table (A2)		Aquatic Fa	-	-			nage Patterns (B10)	
Saturatio	· · /		True Aqua		. ,			Season Water Table (C2	<u>?</u> )
Water Ma	. ,		Hydrogen					fish Burrows (C8)	(00)
	t Deposits (B2)					-		ration Visible on Aerial I	••••
Drift Dep	t or Crust (B4)		Presence of Recent Iro		```	,		ted or Stressed Plants (I norphic Position (D2)	<i>.</i> (1 <i>.</i> )
Iron Depo			Thin Muck					Neutral Test (D5)	
	n Visible on Aerial In	nagery (B7)					<u></u>		
	Vegetated Concave	0,0,0			• •				
Field Observ	vations:								
Surface Wate	er Present? Yes	3	No X	Depth (ir	nches):				
Water Table	Present? Yes	5	No X	Depth (ir	nches):				
Saturation Pr	esent? Yes	3	No X	Depth (ir	nches):		Wetland Hydrolog	gy Present? Yes 🔿	<no< td=""></no<>
(includes cap	illary fringe)								
Describe Rec	corded Data (stream	gauge, mor	nitoring well, aeria	l photos,	previous	s inspec	ctions), if available:		
Domentes									
Remarks: Geomorphic	Position: Located adj	acent to Gi	nger Creek.						

#### WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: Central	Project/Site: Central Park North Fields					ok/DuPage	Э		Sampling Date:	4/22/19
Applicant/Owner:	Oak Brook P	Park District				State	e:	IL	Sampling Point:	2B
Investigator(s): Alyse Olson					Section, Township, Range: Sec. 26, T39N, R11E					
Landform (hillside, te	rrace, etc.): ]	Fop of slope			Local relief (co	oncave, co	nvex	k, none):	Convex	
Slope (%): 0-2	Lat: <u>41.838</u>	816		Long:	-87.955719				Datum: NAD83	
Soil Map Unit Name:	3107A: Sawı	mill silty clay loam					N\	VI class	ification: None	
Are climatic / hydrolo	gic conditions	s on the site typical	for this time of ye	ar?	Yes X	No	_ (	If no, ex	plain in Remarks.)	
Are Vegetation	, Soil,	or Hydrology	significantly distu	urbed?	Are "Normal C	ircumstand	ces"	present?	Yes <u>X</u> No	)
Are Vegetation	, Soil,	or Hydrology	naturally problem	natic?	(If needed, exp	olain any ai	nswe	ers in Re	marks.)	
SUMMARY OF F	INDINGS	<ul> <li>Attach site m</li> </ul>	ap showing	sampli	ng point loc	ations,	trar	nsects	, important feat	ures, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes X Yes	No X No X No X	Is the Sampled Area within a Wetland?	Yes	No <u>X</u>
Remarks:					

#### **VEGETATION** – Use scientific names of plants.

<u>Tree Stratum</u> (Plot size: R=30ft )	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer negundo           2	10	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: <u>2</u> (A)
3. 4.				Total Number of Dominant Species Across All Strata:4(B)
5 Sapling/Shrub Stratum (Plot size: R=15ft )	10	=Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
<u>Sapling/Shrub Stratum</u> (Plot size: <u>R=15ft</u> ) 1. <u>Rhamnus cathartica</u> 2.	50	Yes	FAC	Prevalence Index worksheet: Total % Cover of: Multiply by:
3.				OBL species 0 x 1 = 0
4.				FACW species 0 x 2 = 0
5				FAC species 60 x 3 = 180
	50	=Total Cover		FACU species 30 x 4 = 120
Herb Stratum (Plot size: R=1m )				UPL species 25 x 5 = 125
1. Pastinaca sativa	20	Yes	UPL	Column Totals: 115 (A) 425 (B)
2. Solidago altissima	15	Yes	FACU	Prevalence Index = B/A = 3.70
3. Monarda fistulosa	10	No	FACU	
4. Dipsacus fullonum	5	No	FACU	Hydrophytic Vegetation Indicators:
5. Securigera varia	5	No	UPL	1 - Rapid Test for Hydrophytic Vegetation
6.				2 - Dominance Test is >50%
7.				3 - Prevalence Index is ≤3.0 ¹
8				4 - Morphological Adaptations ¹ (Provide supportin data in Remarks or on a separate sheet)
10.				Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: )	55	=Total Cover		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1. <u>N/A</u>				Hydrophytic
2		=Total Cover		Vegetation Present? Yes No X
Remarks: (Include photo numbers here or on a separ	ato shoot )			
remains. (include proto numbers here of off a separ	ale Sheel.)			

SOIL

Profile Desc	ription: (Describe	e to the dep	th needed to docu	ument tl	ne indica	tor or o	confirm the absence	of indicators.)
Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-7	10YR 2/1	100					Loamy/Clayey	
7-11	10YR 2/1	90	10YR 5/8	10	С	М	Loamy/Clayey	Prominent redox concentrations
11-17	10YR 4/1	60	10YR 4/2	20	D	М	Loamy/Clayey	
			10YR 5/8	20	С	М		Prominent redox concentrations
	oncentration, D=De	pletion, RM=	Reduced Matrix, N	IS=Mas	ked Sand	Grains		: PL=Pore Lining, M=Matrix.
Hydric Soil			Que et la Olar		( <b>0</b> 4)			rs for Problematic Hydric Soils ³ :
Histosol	( )		Sandy Gle					t Prairie Redox (A16)
Black His	vipedon (A2)		Sandy Rec Stripped M	• • •				Manganese Masses (F12) Parent Material (F21)
	n Sulfide (A4)		Dark Surfa		)			Shallow Dark Surface (F22)
	Layers (A5)		Loamy Mu	• •	eral (F1)		,	r (Explain in Remarks)
2 cm Mu			Loamy Gle				Oute	
	Below Dark Surfac	ce (A11)	Depleted N	•	• •			
	rk Surface (A12)		X Redox Dar	,	,		³ Indicator	s of hydrophytic vegetation and
Sandy M	ucky Mineral (S1)		Depleted D	ark Sur	face (F7)			nd hydrology must be present,
5 cm Mu	cky Peat or Peat (S	\$3)	Redox Dep	pression	s (F8)			s disturbed or problematic.
Restrictive I	_ayer (if observed	):						
Type:		,						
Depth (in	iches):						Hydric Soil Present	? Yes X No
Remarks:								
	m is revised from N	/lidwest Regi	onal Supplement \	/ersion 2	2.0 to incl	ude the	NRCS Field Indicators	s of Hydric Soils, Version 7.0, 2015
	//www.nrcs.usda.go	-						
HYDROLO	GY							
Wetland Hv	drology Indicators	:						
-	cators (minimum of		red; check all that a	apply)			Seconda	ry Indicators (minimum of two required)
-	Water (A1)		Water-Stai		ves (B9)		Surfa	ice Soil Cracks (B6)
High Wa	ter Table (A2)		Aquatic Fa	una (B1	3)			age Patterns (B10)
Saturatio	on (A3)		True Aqua	tic Plant	s (B14)		Dry-S	Season Water Table (C2)
Water M	arks (B1)		Hydrogen	Sulfide (	Odor (C1)		Cray	fish Burrows (C8)
Sedimen	t Deposits (B2)		Oxidized R	hizosph	eres on L	iving Re	oots (C3) Satur	ation Visible on Aerial Imagery (C9)
Drift Dep	osits (B3)		Presence of	of Reduc	ed Iron (	C4)	Stunt	ed or Stressed Plants (D1)
	t or Crust (B4)		Recent Iron			led Soil		norphic Position (D2)
	osits (B5)		Thin Muck		• •		FAC-	Neutral Test (D5)
	on Visible on Aerial	0,1	, <u> </u>					
	Vegetated Concav	e Surface (E	88)Other (Exp	lain in R	lemarks)			
Field Obser				//				
Surface Wat		′es			nches):			
Water Table		′es			nches):		Wetley d Lludgele	
Saturation P		′es	No <u>X</u>	Depth (I	nches):		Wetland Hydrolog	gy Present? Yes No X
(includes cap	corded Data (strear	m daudo	nitoring wall paris	Inhotoc	nrovious	inenco	tions) if available:	
Describe Re	Corueu Dala (Sileal	n yauye, mo	moning well, aeria	i priotos	, previous	sinspec	aons), ii available.	
Remarks:								

### **APPENDIX C**

Vegetation Data

### Wetland 1 Plant Community Inventory & Summary

Species Acronym	Species Name (NWPL/Mohlenbrock)	Species(Synonym)	Common Name	C Value	Midwest WET indicator	NC-NE WET indicator	WET indicator (numeric)	Habit	Duration	Nativity	Conservatism-l Metrics	Based
AGRSTO	Agrostis stolonifera	Agrostis alba palustris	Spreading Bent	2	FACW	FACW	-1	Grass	Perennial	Native		
BARVUL	Barbarea vulgaris	BARBAREA VULGARIS	Garden Yellow-Rocket	0	FAC	FAC	0	Forb	Biennial	Adventive	Mean C (native species)	2.67
CXTRIB	Carex tribuloides	Carex tribuloides	Blunt Broom Sedge	7	OBL	FACW	-2	Sedge	Perennial	Native	Mean C (all species)	1.60
DIPFUL	Dipsacus fullonum	DIPSACUS SYLVESTRIS	Fuller's Teasel	0	FACU	FACU	1	Forb	Biennial	Adventive	Mean C (native trees)	0.00
JUNTEN	Juncus tenuis	Juncus tenuis	Lesser Poverty Rush	0	FAC	FAC	0	Forb	Perennial	Native	Mean C (native shrubs)	2.00
LONMAA	Lonicera maackii	LONICERA MAACKII	Amur Honeysuckle	0	UPL	UPL	2	Shrub	Perennial	Adventive	Mean C (native herbaceous)	3.00
PHRAUSM	Phragmites australis ssp.	Phragmites americanus	Common Reed	3	FACW	FACW	-1	Grass	Perennial	Native	FQAI (native species)	9.24
POAPRA	Poa pratensis	POA PRATENSIS	Kentucky Blue Grass	0	FAC	FACU	0	Grass	Perennial	Adventive	FQAI (all species)	7.16
POPDEL	Populus deltoides	Populus deltoides	Eastern Cottonwood	0	FAC	FAC	0	Tree	Perennial	Native	Adjusted FQAI	20.66
RHACAT	Rhamnus cathartica	RHAMNUS CATHARTICA	European Buckthorn	0	FAC	FAC	0	Shrub	Perennial	Adventive	% C value 0	50%
SALINT	Salix interior	Salix interior	Sandbar Willow	2	FACW	FACW	-1	Shrub	Perennial	Native	% C Value 1-3	30%
SCHTAB	Schoenoplectus tabernaemontani	Scirpus validus creber	Soft-Stem Club-Rush	3	OBL	OBL	-2	Sedge	Perennial	Native	% C value 4-6	15%
SCIATV	Scirpus atrovirens	Scirpus atrovirens	Dark-Green Bulrush	4	OBL	OBL	-2	Sedge	Perennial	Native	% C value 7-10	5%
SECVAR	Securigera varia	CORONILLA VARIA	Crown Vetch	0	UPL	UPL	2	Forb	Perennial	Adventive		trico
SOLALT	Solidago altissima	Solidago altissima	Tall Goldenrod	1	FACU	FACU	1	Forb	Perennial	Native	Additional Me	trics
SOLCAN	Solidago canadensis	Solidago canadensis	Canadian Goldenrod	1	FACU	FACU	1	Forb	Perennial	Native	Species Richness (all)	20
TAROFF	Taraxacum officinale	TARAXACUM OFFICINALE	Common Dandelion	0	FACU	FACU	1	Forb	Perennial	Adventive	Species Richness (native)	12
TRIHYB	Trifolium hybridum	TRIFOLIUM HYBRIDUM	Alsike Clover	0	FACU	FACU	1	Forb	Perennial	Adventive	% Non-native	40%
TYPLAT	Typha latifolia	Typha latifolia	Broad-Leaf Cat-Tail	5	OBL	OBL	-2	Forb	Perennial	Native	Wet Indicator (all)	-0.15
VERHAS	Verbena hastata	Verbena hastata	Simpler's-Joy	4	FACW	FACW	-1	Forb	Perennial	Native	Wet Indicator (native)	-0.83
											% hydrophyte (Midwest)	65%

60%

0%

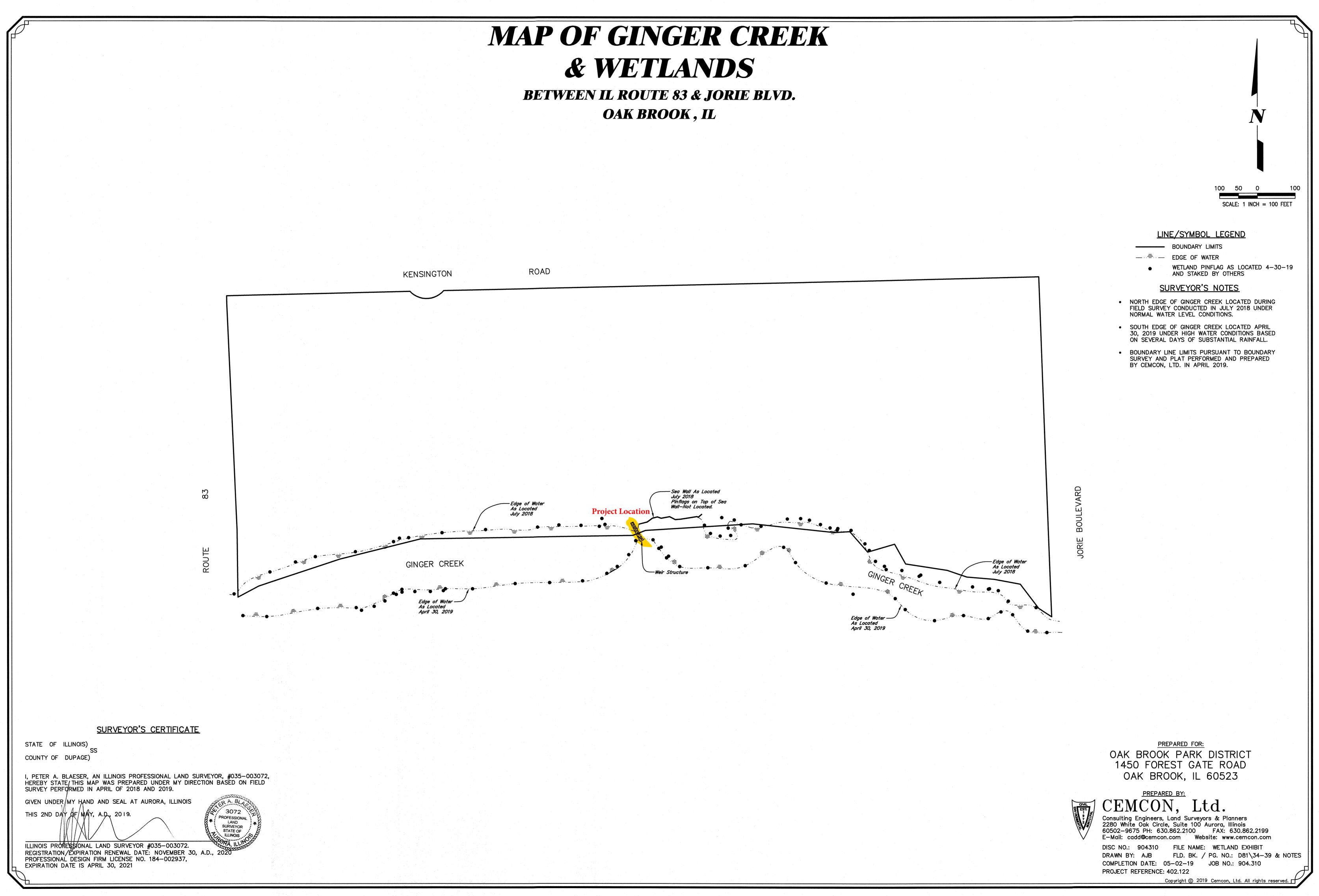
0% 90%

% native perennial % native annual

% annual

% perennial

### Wetland 2 Plant Community Inventory & Summary


Species Acronym	Species Name (NWPL/Mohlenbrock)	Species(Synonym)	Common Name	C Value	Midwest WET indicator	NC-NE WET indicator	WET indicator (numeric)	Habit	Duration	Nativity	Conservatism-E Metrics	Based
ACENEG	Acer negundo	Acer negundo var. violaceum	Ash-Leaf Maple	0	FAC	FAC	0	Tree	Perennial	Native		
ALLCAN	Allium canadense	Allium canadense	Meadow Garlic	3	FACU	FACU	1	Forb	Perennial	Native	Mean C (native species)	3.63
ALNGLU	Alnus glutinosa	ALNUS GLUTINOSA	European Alder	0	FACW	FACW	-1	Tree	Perennial	Adventive	Mean C (all species)	2.42
DIPFUL	Dipsacus fullonum	DIPSACUS SYLVESTRIS	Fuller's Teasel	0	FACU	FACU	1	Forb	Biennial	Adventive	Mean C (native trees)	0.00
IRIVIR	Iris virginica var. shrevei	Iris virginica shrevei	Virginia Blueflag	5	OBL	OBL	-2	Forb	Perennial	Native	Mean C (native shrubs)	0.00
MONFIS	Monarda fistulosa	Monarda fistulosa	Oswego-Tea	4	FACU	FACU	1	Forb	Perennial	Native	Mean C (native herbaceous)	4.14
PASSAT	Pastinaca sativa	PASTINACA SATIVA	Parsnip	0	UPL	UPL	2	Forb	Biennial	Adventive	FQAI (native species)	10.25
RHACAT	Rhamnus cathartica	RHAMNUS CATHARTICA	European Buckthorn	0	FAC	FAC	0	Shrub	Perennial	Adventive	FQAI (all species)	8.37
RUDLAC	Rudbeckia laciniata	Rudbeckia laciniata	Green-Head Coneflower	4	FACW	FACW	-1	Forb	Perennial	Native	Adjusted FQAI	29.60
SILPER	Silphium perfoliatum	Silphium perfoliatum	Cup-Plant	5	FACW	FACW	-1	Forb	Perennial	Native	% C value 0	42%
SOLALT	Solidago altissima	Solidago altissima	Tall Goldenrod	1	FACU	FACU	1	Forb	Perennial	Native	% C Value 1-3	17%
THADIO	Thalictrum dioicum	Thalictrum dioicum	Early Meadow-Rue	7	FACU	FACU	1	Forb	Perennial	Native	% C value 4-6	33%
											% C volue 7 10	00/

% C value 7-10	8%
Additional Me	trics
Species Richness (all)	12
Species Richness (native)	8
% Non-native	33%
Wet Indicator (all)	0.17
Wet Indicator (native)	0.00
% hydrophyte (Midwest)	50%
% native perennial	67%
% native annual	0%
% annual	0%
% perennial	83%

### Wetland Fringe Plant Community Inventory & Summary

	Species Acronym	Species Name (NWPL/Mohlenbrock)	Species(Synonym)	Common Name	C Value	Midwest WET indicator	NC-NE WET indicator	WET indicator (numeric)	Habit	Duration	Nativity	Conservatism-Based Metrics	
AGF	RSTO	Agrostis stolonifera	Agrostis alba palustris	Spreading Bent	2	FACW	FACW	-1	Grass	Perennial	Native		
ASC	CINC	Asclepias incarnata	Asclepias incarnata	Swamp Milkweed	3	OBL	OBL	-2	Forb	Perennial	Native	Mean C (native species)	2.89
BET	INIG	Betula nigra	Betula nigra	River Birch	5	FACW	FACW	-1	Tree	Perennial	Native	Mean C (all species)	1.86
DAL	JCAR	Daucus carota	DAUCUS CAROTA	Queen Anne's Lace	0	UPL	UPL	2	Forb	Biennial	Adventive	Mean C (native trees)	5.00
DIP	FUL	Dipsacus fullonum	DIPSACUS SYLVESTRIS	Fuller's Teasel	0	FACU	FACU	1	Forb	Biennial	Adventive	Mean C (native shrubs)	0.00
JUN	ITEN	Juncus tenuis	Juncus tenuis	Lesser Poverty Rush	0	FAC	FAC	0	Forb	Perennial	Native	Mean C (native herbaceous)	2.63
MON	NFIS	Monarda fistulosa	Monarda fistulosa	Oswego-Tea	4	FACU	FACU	1	Forb	Perennial	Native	FQAI (native species)	8.67
PHA	ARU	Phalaris arundinacea	PHALARIS ARUNDINACEA	Reed Canary Grass	0	FACW	FACW	-1	Grass	Perennial	Adventive	FQAI (all species)	6.95
PLA	LAN	Plantago lanceolata	PLANTAGO LANCEOLATA	English Plantain	0	FACU	FACU	1	Forb	Perennial	Adventive	Adjusted FQAI	23.16
RHA	ACAT	Rhamnus cathartica	RHAMNUS CATHARTICA	European Buckthorn	0	FAC	FAC	0	Shrub	Perennial	Adventive	% C value 0	43%
SOL	_ALT	Solidago altissima	Solidago altissima	Tall Goldenrod	1	FACU	FACU	1	Forb	Perennial	Native	% C Value 1-3	29%
SOL	GIG	Solidago gigantea	Solidago gigantea	Late Goldenrod	4	FACW	FACW	-1	Forb	Perennial	Native	% C value 4-6	29%
VER	RHAS	Verbena hastata	Verbena hastata	Simpler's-Joy	4	FACW	FACW	-1	Forb	Perennial	Native	% C value 7-10	0%
VIO	SOR	Viola sororia	Viola priceana	Hooded Blue Violet	3	FAC	FAC	0	Forb	Perennial	Native	Additional Me	trics

% C value 4-6	29%
% C value 7-10	0%
Additional Me	trics
Species Richness (all)	14
Species Richness (native)	9
% Non-native	36%
Wet Indicator (all)	-0.07
Wet Indicator (native)	-0.44
% hydrophyte (Midwest)	64%
% native perennial	64%
% native annual	0%
% annual	0%
% perennial	86%



Page 56



#### Ginger Creek Bridge & Dam Project at Central Park Bridge Condition & Alt. Analysis Report



### **Bridge Condition & Alternative Analysis Report**

ERA Project #W22317.00

FEATURE CROSSED: Ginger Creek COUNTY: DuPage

### **Prepared for:**

Oak Brook Park District

DATE INSPECTED: February 10th, 2023 SUBMITTAL DATE: March 3rd, 2023 FINAL DELIVERABLE: April 21st, 2023



**MILWAUKEE** 

**CHICAGO** 

CHAMPAIGN

WARRENVILLE PH: 630-393-3060 3S701 West Ave, Ste. 150 Warrenville, IL 60555

WWW.ERACONSULTANTS.COM

DENVER





#### TABLE OF CONTENTS

١.	INTRODUCTION	2
II.	ADMINISTRATIVE DATA	2
III.	STRUCTURE DATA	2
IV.	PHYSICAL DESCRIPTION OF STRUCTURE	2
V.	FIELD INSPECTION & PHYSICAL EVALUATION	3
VI.	POTENTIAL SCOPE OF WORK DETERMINATION AND ANALYSIS	5
VII.	HYDRAULIC ANALYSIS	. 10
VIII.	ENVIRONMENTAL ANALYSIS	.11
IX.	PERMITTING	.13
Х.	FUNDING OPPORTUNITIES	. 13
XI.	RECOMMENDED SCOPE OF WORK	. 14

#### **APPENDICES:**

- A. Location Map
- B. Cost Estimates
- C. Proposed Structure Drawings
- D. Structure Photographs
- E. Existing Plans
- F. Permit Matrix
- G. Funding Opportunity Matrix
- H. Overall Site Plans
- I. Regulatory Hydraulic Output and Floodplain Location Maps
- J. Tree Inventory Plan
- K. Hydrologic and Hydraulic Analysis
- L. Streambank Profile Concept Design



#### I. INTRODUCTION

This Bridge Condition & Alternative Analysis Report describes the condition of the existing Class 3 dam controlling Ginger Creek and presents a recommended scope of work along with the estimated construction cost. The structure was last inspected on May 4th, 2015, and it is not historically significant. The information provided in this report is based on the past inspection reports, existing plans and Engineering Resource Associates, Inc. (ERA)'s inspection of the bridge performed on February 10th, 2023.

#### II. ADMINISTRATIVE DATA

COUNTY:	DuPage
FEATURE CARRIED:	Central Park Pedestrian Path
FEATURE CROSSED:	Ginger Creek

#### III. STRUCTURE DATA

#### **Construction / Reconstruction / Repair History**

Year	Comments
1976	Original Construction
1982	Concrete Footing Construction, Path Repair & Grating Installation
1988	Gabion Weir Removal & Replacement, Grout Pumping, Placement of Clay Fill,
	Geotextile Fabric & Riprap
2001	Gabion Weir Removal & Replacement, Riprap Installation

#### **IV. PHYSICAL DESCRIPTION OF STRUCTURE**

The pedestrian path through Central Park is carried over Ginger Creek by a water control structure consisting of concrete cut of walls supporting open grating. The structure is located within a public park owned by the Oak Brook Park District, located approximately 0.34 mile south of I-88 and 0.22 miles east of IL-83 in the Village of Oak Brook, Illinois as shown in Appendix A.

- Concrete Weir and Spillway (9'-7" clear weir width from face-to-face of footing)
- Steel grate (9'-4" x 10'-4") supported on reinforced, concrete footings and approach slabs

2

- Tiered, gabion basket sidewalls (5'-9" wide) & concrete sidewalls (1 ft. wide)
- No railings attached to the structure



- Unknown Design Loading
- Asphalt and concrete approach paths (8 ft. wide)
- Downstream slope protection consisting of riprap & cast-in-place (CIP) concrete mattress
- Adjacent, permanent steel sheet piling retaining wall (approximately 109 ft. in length)

Oak Brook Park District has present jurisdiction and maintenance of the structure. The existing plans are included in Appendix E.

#### V. FIELD INSPECTION & PHYSICAL EVALUATION

The bridge was inspected on February 10th, 2023, with a temperature of approximately 30 degrees Fahrenheit. The inspection team consisted of one (1) NBIS Program Manager and one (1) Field Inspector. The field inspection consisted of a visual inspection of all structure components from the ground to determine deteriorated structure elements. The areas adjacent to the structure and in the waterway were accessed with the use of a boat. Traffic control was not utilized to complete the inspection. Inspection photos can be referenced in Appendix D.

#### Water Control Structure

The steel grate is in good condition, however, debris buildup was observed at the face of the weir and around the perimeter of the grate. The clearance between the top of grate and spillway below is low causing debris to buildup and scour at the upstream face. Additionally, once the flood waters decrease, vegetation is left on top of the grate causing a slippery surface which is a hazard for pedestrians. The concrete weir and spillway are in fair condition with some cracking, spalling of the concrete and upstream scour.

The concrete approach and footings are in fair condition. The northern slab is spalled at the joint with the sidewalk, and there are hairline spider cracks extending outwards from the spall. Transverse cracking was also observed in the top of slab adjacent to the grate (see Photograph 2). The south approach and adjacent concrete sidewalk were wet with water staining on both approaches likely due to overtopping events (see Photograph 3). Full width, transverse cracking was also observed in the southern, concrete approach path.

The tiered, gabion walls are in poor condition. At the dam, the northern wall appears to be leaning outwards towards the waterway (see Photograph 5). Both the northern and southern wall show signs of rock displacement, wire distortion and corrosion (see Photographs 6 to 7). Vertical cracking and spalled concrete were seen on the exposed face of the concrete retaining wall (see Photograph 8). Mortared riprap adjacent to the path has been displaced, exposing the underlying geotechnical fabric at the northern wall.



#### **Permanent Steel Sheet Pile Retaining Wall**

The sheet pile retaining wall is in poor condition. The wall is approximately 109 ft. long with a retained height varying from 4'-0" to 7'-8" (see Photograph 9). The front face of the sheet pile wall shows signs of deterioration throughout nearly two-thirds of the wall's height, particularly near the water line (see Photograph 13). Numerous holes were spotted on the front face of the sheet piling at areas with moderate to severe corrosion (see Photographs 10, 12 & 13). Steel scaling, corrosion with section loss and pitting was also observed on the exposed face of the wall throughout the length of the wall (see Photographs 10 & 11).

Minimal ground cover and slope stabilization was present behind the wall. The adjacent area drains towards the back wall resulting erosion of the back slope measuring up to 6" beneath the top wall plate at some locations (see Photograph 15). Surface runoff has created voids between the top plate and the vertical, sheet piling (see Photograph 14). Vegetation, including sizeable trees and brush, was observed along half of the top of the wall (see Photograph 16). At the east end, the slope behind the wall has eroded away exposing approximately one-third of the height of the back face of the wall at this location (see Photograph 13). Riprap and CIP concrete mattress were observed along the front face of the sheet pile wall, primarily near the water control structure (see Photograph 17).

#### **Slope Protection & Channel**

The slope protection and channel are in satisfactory condition. Swirling water was observed at the face of the north footing suggesting there the occurrence of local scour at this location (see Photograph 18). There is CIP concrete mattress along the upstream face of the dam and gabion baskets, and along the front face of the sheet pile wall near the dam. The CIP fabric-formed revetment system is in satisfactory condition. The revetment mat is covered in moss, creating a slippery surface, which is hazardous for park users attempting to access the creek to fish. Riprap was also identified at the downstream face of the dam and along the front face of the sheet pile wall (see Photograph 17). Debris was seen at the upstream face of the structure (see Photograph 20).

#### **Inspection History**

Year	Overall Condition				
2015	Good to Excellent				



#### Geometric Data \ Horizontal & Vertical Clearance \ Hydraulic Data

The existing path is on a horizontal and vertical curve through the limits of the structure with the low point located over the structure. The vertical path profile grade across the structure is approximately 0.65%. The clearance between top of grate and top of spillway at the pedestrian crossing is approximately 1'-2".

The existing dam retains Ginger Creek, a tributary in the Salt Creek Watershed. The drainage area to the dam is 4.84 square miles and the weir is within the FEMA floodway within Zone AE floodplain. The rectangular, broad crested weir carries flows to the downstream side of the dam. During rainfall events, the upstream head exceeds the height of the weir and will frequently overtop the dam and the multi-use path is unpassable. Both the north and south approaches are within the 100 yr. floodplain. As the hydraulic head builds along the rock gabions, the dam functions as a combination weir. The waterway adequacy is insufficient with frequent overtopping of the structure and the approaches with significant pedestrian traffic disturbances.

#### VI. POTENTIAL SCOPE OF WORK DETERMINATION AND ANALYSIS

The purpose to this project is to evaluate the need for structural replacement to restore the structural and hydraulic integrity of the water control structure, and to ensure the safe travel of pedestrian traffic over the crossing. The following courses of action (alternatives) have been analyzed and cost estimates performed for the anticipated scopes of work:

Alternative 1 – New Pedestrian Bridge (Existing Dam and Retaining Wall to Remain)

Alternative 2A -New Pedestrian Bridge, Dam, And Step Pools (Straight Bridge Alignment) Alternative 2B -New Pedestrian Bridge, Dam, And Sloped Wall (Straight Bridge Alignment)

Alternative 3A -New Pedestrian Bridge, Dam, And Step Pools (Skewed Bridge Alignment) Alternative 3B -New Pedestrian Bridge, Dam, And Sloped Wall (Skewed Bridge Alignment)

Repairs to the water control structure, including the gabion sidewalls, and the sheet pile retaining wall were evaluated, but ultimately not considered a feasible option based on the structure's maintenance history and the existing conditions observed in the field. Due to the accelerated deterioration of the structure, it is not anticipated to reach the typical life expectancy of modern dams (~75 yrs.). The additional lifespan resulting from repairs, estimated at 5 to 10 years, is not reasonable relative to the anticipated cost and complexity of the repair scope. Due to these combined factors, it is not recommended to rehabilitate the existing structures.



The structure is located within a public park and carries a pedestrian path over Ginger Creek. It is recommended the proposed scope of work be completed during a posted, path closure. No alternative routes were identified as this is the only crossing over Ginger Creek within the park limits. Park users will be able to access the northern half of the park using the Kensington Road entrance, and the southern half of the park using the Forest Gate Road entrance.

All the proposed design alternatives provide grade separation between the pedestrian path and the water control structure through construction of a new pedestrian bridge. The proposed bridge design consists of the following:

- Type: Prefabricated Truss
- Superstructure Material: Painted, Weathering Steel
- Deck Type: 6" Cast-In-Place (CIP) Reinforced Concrete
- *Proposed Span:* 100'-0" (center to center of piles)
- Clear Bridge Width: 10'-0" (face to face of railings)
- Railings: Horizontal Safety Rail (ADA Compliant)
- Design Loading: H-10 Vehicle (20,000 lbs.)

A summary of the estimated costs for each alternative is given in Table 1. Detailed cost estimates are provided in Appendix B, the proposed structure drawings are shown in Appendix C and the overall site plans are located in Appendix H.

Table I – Estimated Cost Summary and Comparison							
Alternative	Estimated Cost	% Comparison					
<ol> <li>New Pedestrian Bridge (Existing Dam &amp; Retaining Wall to Remain)</li> </ol>	\$1,246,000						
2A. New Pedestrian Bridge, Dam & Step Pools (Straight Bridge Alignment)	\$1,205,900	97% of Alt. 1					
2B. New Pedestrian Bridge, Dam & Sloped Walls (Straight Bridge Alignment)	\$1,165,800	94% of Alt. 1					
3A. New Pedestrian Bridge, Dam & Step Pools (Skewed Bridge Alignment)	\$1,203,900	97% of Alt. 1					
3B. New Pedestrian Bridge, Dam & Sloped Walls (Skewed Bridge Alignment)	\$1,246,300	100% of Alt. 1					

#### Table 1 – Estimated Cost Summary and Comparison

The proposed alternatives and cost estimates are based on the key components listed below.



#### ALTERNATIVE #1: NEW PEDESTRIAN BRIDGE - EXISTING DAM & RETAINING WALL TO REMAIN

This alternative was analyzed to provide a base level construction cost for providing grade separation between the pedestrian path and the water control structure while maintaining the use of the existing dam. A significant profile raise is anticipated for the path and bridge in order to provide adequate vertical clearance for a future dam reconstruction, thus requiring the use of retaining walls along the approach and departure paths for this design option. The retaining walls limit the fill in the floodplain by eliminating the embankment grading. This alternative does not provide a suitable cut area to compensate for the additional fill generated by the raise profile, therefore, it is not a viable option.

The scope of work includes:

- Install a prefabricated, pedestrian truss superstructure supported on high-wall abutment on pile supported footings and wrap around retaining walls
- Construct Redi-Rock Big Block retaining walls (~ 700 ft. long) to accommodate the path profile raise
- Reconstruct approach path for new bridge alignment

The estimated construction cost for this scope of work is \$1,246,000.

### ALTERNATIVE #2A: NEW PEDESTRIAN BRIDGE, DAM & STEPPED POOLS (STRAIGHT BRIDGE ALIGNMENT)

This alternative was analyzed because it provides a naturalized creek bottom utilizing step pools with a combination of boulders and cobbles to reduce the velocity of the water and minimize the potential scour and erosion adjacent to the dam. The stepped pools will also guide the flows towards the south, which will reduce sedimentation along the northern streambank. This alternate will also balance the compensatory storage cut and the fill volumes within the project limits.

The scope of work includes:

- Remove existing weir, spillway and gabion walls
- Remove the existing steel sheet pile wall by grading out behind the wall (creating cut in the floodplain & floodway)
- Install a prefabricated, pedestrian truss superstructure on pile supported abutments
- Reconstruct approach path for new bridge alignment
- Install a new dam west of the new pedestrian structure consisting of permanent steel sheet piling with concrete facing (~ 70-ft. in length)
- · Create stepped pools downstream of the dam by building up the creek and utilizing boulders



to create elevation jumps at 50 ft. intervals (elevations will drop from 758.5 ft. down to 755 ft.)

The estimated construction cost for this scope of work is \$1,205,900.

### ALTERNATIVE #2B: NEW PEDESTRIAN BRIDGE, DAM & SLOPED WALLS (STRAIGHT BRIDGE ALIGNMENT)

This alternative was analyzed because it mimics the design of the existing dam and provides a balanced volume of cut and fill within the floodplain and floodway. Additionally, the baffles will reduce the velocity of the water as it enters the downstream waterway. This design option does not allow for fish passage.

The scope of work includes:

- Remove existing weir, spillway and gabion walls
- Remove the existing steel sheet pile wall by grading out behind the wall (creating cut in the floodplain & floodway)
- Install a prefabricated, pedestrian truss superstructure on pile supported abutments
- Reconstruct approach path for new bridge alignment
- Install a new dam west of the new pedestrian structure consisting of permanent steel sheet pile with concrete facing (~ 70 ft. in length)
- Construct a sloped wall to create the grade difference from 758.5 ft. to 755 ft. and install concrete baffles to dissipate energy and render flows to acceptable velocities

The estimated construction cost for this scope of work is \$1,165,800.

### ALTERNATIVE #3A: NEW PEDESTRIAN BRIDGE, DAM & STEPPED POOLS (SKEWED BRIDGE ALIGNMENT)

This alternative is similar to Alternative #2A with the exception of the bridge location. This design option was analyzed because it provides a better path alignment with the main walkway from the Kensington Road entrance/parking lot to the pedestrian bridge. The proposed dam is located further west, which allows the bridge to be lowered since the water surface elevations will be lower east of the dam. This design also provides a naturalized creek bottom utilizing stepped pools with a combination of boulders and cobbles to reduce the velocity of the water and minimize the potential scour and erosion adjacent to the dam. The stepped pools will also guide the flows towards the south, which will reduce sedimentation along the northern streambank. This alternate will also balance the compensatory storage cut and the fill volumes within the project limits.



The scope of work includes:

- Remove existing weir, spillway and gabion walls
- Remove the existing steel sheet pile wall by grading out behind the wall (creating cut in the floodplain & floodway)
- Install a prefabricated, pedestrian truss superstructure on pile supported abutments
- Reconstruct approach paths for new bridge
- Install a new dam west of the new pedestrian structure consisting of permanent steel sheet pile with concrete facing (approximately 70 ft. in length)
- Create stepped pools downstream of the dam by building up the creek and utilizing boulders to create elevation jumps at 50 ft. intervals (elevations will drop from 758.5 ft. down to 755 ft.)

The estimated construction cost for this scope of work is \$1,203,900.

### ALTERNATIVE #3B: NEW PEDESTRIAN BRIDGE, DAM & SLOPED WALLS (SKEWED BRIDGE ALIGNMENT)

This alternative is similar to Alternative #2B with the exception of the bridge location. This alternative was analyzed because it provides a better path alignment with the main walkway from the Kensington Road entrance/parking lot to the pedestrian bridge. The proposed dam is located further west which allows the bridge to be lowered since the water surface elevations will be lower east of the dam. This alternative also mimics the design of the existing dam and provides a balanced volume of cut and fill within the floodplain and floodway. Additionally, the baffles will reduce the velocity of the water as it enters the downstream waterway. This design option does not allow for fish passage.

The scope of work includes:

- Remove existing weir, spillway and gabion walls
- Remove the existing steel sheet pile wall by grading out behind the wall (creating cut in the floodplain & floodway)
- Install a skewed, prefabricated, pedestrian truss superstructure on pile supported abutments
- Reconstruct approach paths for new bridge
- Install a new dam west of the new pedestrian structure consisting of permanent steel sheet piling with concrete facing (~ 70 ft. in length)
- Create stepped pools downstream of the dam by building up the creek and utilizing boulders to create elevation jumps at 50 ft. intervals (elevations will drop from 758.5 ft. down to 755 ft.)

The estimated construction cost for this scope of work is \$1,246,300.



#### **VII. HYDRAULIC ANALYSIS**

The existing dam retains Ginger Creek, a tributary in the Salt Creek Watershed. The rectangular, broad crested weir carries flows to the downstream side of the dam. During rainfall events, the upstream hydraulic head exceeds the height of the weir and will frequently overtop the dam and the multi-use path is unusable. As the head builds along the rock gabions, the dam functions as a combination weir. In addition to the flows over the weir, an inlet at the upstream side of the dam siphons water to three ponds in series downstream of the dam in the Ginger Creek floodway. These ponds discharge to the rocked riffles installed east of the dam. The drainage area to the dam is 4.84 square miles and the weir is in the FEMA floodway within Zone AE floodplain.

The regulatory model is a Full Equations (FEQ) model, a USGS model. The initial model was created through a cooperative partnership between DuPage County and FEMA in 2004 and was revised by LandC, etc. LLC in 2013. ERA obtained the FEQ model from DuPage County as well as the PVSTATS file with the results from the model. The regulatory model includes surveyed cross sections up and down stream of the dam, the dam and pedestrian path through the center of Central Park as well as the eastern dam that was removed in 2019.

For this preliminary analysis, ERA utilized the data obtained from the FEQ model, the regulatory elevations, to design the bridge and dam alternatives. Those flood elevations are shown in the table below. The proposed weir will maintain the elevation of the existing weir to ensure the normal water surface elevation of the upstream pond remains the same and the downstream areas are not at an increased risk of flooding.

Storm Frequency (year)	Water Surface Elevation (NAVD 88)	Depth of Water Above Pedestrian Path (feet)
10 year	662.9'	2.9'
50 year	664.4'	4.4'
100 year	664.8'	4.8'
500 year	665.6'	5.6'

Table 2 -	Flood	<b>Elevations</b>	&	Depths	at	the	Existing	Dam	Crossing
	11004	Liotationo	~	Doptilo	~			Pulli	0.000000

ERA created a modified existing conditions model that can be used in future analysis of the dam and the preferred alternatives. ERA utilized the data in the FEQ model to create a HEC-RAS model. The HEC-RAS model includes the FEQ cross sections, manning's roughness coefficient, expansion and contraction rates, flows and weir/dam structure information. In addition to the regulatory model data, ERA supplemented the HEC-RAS model with surveyed information of the current condition including removing the second dam structure and replacing it with the existing rocked riffles. All elevations have been converted to NAVD 88 and cross sections were added downstream of the dam where potential stepped pools may be added. The boundary condition for



the model is set with known water surface elevations from the regulatory model. This modified existing conditions model may be used during the design of the proposed bridge and dam. When this project moves into permitting, a FEQ model is required since the regulatory floodplain model is in a USGS Full Equations Model. The floodplain maps and regulatory hydraulic outputs can be referenced in Appendix I.

Due to the topography at the site and the proposed fill in the alternatives that include fish passages, the proposed bridge will span the floodplain with abutments placed at the existing high points on either side of the existing dam. This will reduce the overall proposed fill in the floodplain and floodway. The proposed dam improvements will maintain the existing weir elevation and dimensions. Since the design proposes maintaining the elevations of the dam and a bridge design that almost completely spans the floodplain, it is anticipated that there will be no adverse changes in water surface elevations or the conveyance capacity of Ginger Creek in this stretch. To analyze this concept, ERA created a proposed HEC-RAS model that evaluated the changes described in Alternative 3A. All elevations and streambank improvements are preliminary and should not be used for design or permitting purposes. Additional analysis is required during the design of the bridge and dam infrastructure. Appendix K of the report includes the results of the preliminary model, the preliminary proposed cross sections and compensatory storage calculations of Alternative 3A.

#### **VIII. ENVIRONMENTAL ANALYSIS**

Ginger Creek is a jurisdictional Waters of the United States. The creek within Central Park was restricted by two dams in 1976 to create a series of ponds. One of the dams failed in 2017 and was not replaced. The shoreline of the pond upstream of the remaining dam is naturalizing. On the northern side the vegetation is predominantly scrub shrub. On the southern side, there is a mix of mowed turf, scrub shrub and prairie vegetation. The pond has some wetland fringe associated with the shoreline on the south side. Downstream of the dam the shoreline of the creek within the project area consists of a sheet pile wall on the north and a combination of fabric formed concrete and prairie vegetation on the south side.

Most impounded streams deposit sediment on the upstream side of the impoundment and scour the stream bed on the downstream side. This is evident of the dam on Ginger Creek. The pond upstream of the impoundment has a lot of floating aquatic vegetation present indicating shallow water depths, stagnant water, and sediment deposition. On the downstream side of the dam there appears to be a scour hole. This sediment displaced by scour has deposited within the creek forming a peninsula. Following the removal of the downstream dam in 2019 the creek appears to be seeking equilibrium and has begun to meander towards the south. However, the scour hole and sediment peninsula remain.



#### Step Pools/Fish Passage

As the dam is approximately 3.5 ft in height it is not possible for fish to move upstream of this structure. In order to allow fish to migrate upstream stepped pools are recommended to be added to the downstream face of the dam within the channel for grade transition. The stepped pools consist of boulder arches and pools. The stepped pools will be designed so that velocities will be low enough for fish passage during normal flows. There may still be some passage restrictions for various species since this design can often require some level of jumping required by fish to pass upstream.

It should also be noted that impoundments created by dams also have low dissolved oxygen (DO) levels and sediment beds associated with the stagnant water upstream. DO is the amount of free oxygen that is present in the water. Fish require oxygen to survive. Flowing water and gravel stream beds with low levels of sediment are essential for fish and macroinvertebrates (insects). This stepped pool option does not improve any upstream DO issues or restore the flow of water or reduce streambed sediment. To remedy these issues the dam would need to be removed, however, this would result in the loss of the pond and have potential to impact flood elevations and create an indirect impact to wetlands.

#### Wetland/Riparian Restoration

A Wetland Delineation and Assessment Report for the Central Park North Fields was completed on May 31st, 2019, by WBK Engineering, LLC. This delineation included the ponds and dam. The boundary was reviewed by ERA in summer 2022 for the Central Park OSLAD improvements. During permitting of the stone outcropping, the Village of Oak Brook required that the boundary be reverified as it had been greater than two years since the delineation had been completed. ERA met with the Village's representative on February 15th, 2023, and no changes to the boundary were made. It was noted at the time of the verification that the downstream wetland on the sediment peninsula may have expanded. The wetland peninsula should be delineated on an aerial and avoided by the project if possible.

Minor direct wetland impacts may result due to the construction of this project. Impacts are necessary to access the creek to replace the dam, construct the bridge and place stone if the stepped pool option is selected. Indirect wetland impacts are not anticipated as the existing dam at its current elevation will remain. Wetland impacts may be mitigated onsite through enhancement of existing wetland areas, like the wetland peninsula currently dominated by Giant Reed. Additionally, the rock areas within the existing scour pool created by the stepped pools could be planted with wetland vegetation.

Wetland buffer impacts are also anticipated due to access and regrading of the slopes. The limited functions of the buffer can be replaced by restoration with native deep rooted prairie

12



vegetation and native trees and shrubs that provide more wildlife benefits than the existing Buckthorn and Honeysuckle dominated scrub shrub areas.

#### IX. PERMITTING

The activities associated with the identified improvements are regulated by various agencies and regulations, including the following. For more information about each permit and their requirements, please see Appendix F.

- U.S. Army Corps of Engineers
- IDNR-OWR (Part 3708) Floodway Construction Permit
- IDNR-OWR (Part 3702) Dam Construction and Maintenance Permit
- IEPA Construction Site Runoff NOI (ILR10)
- IEPA Section 404/401 Permit
- IDNR Interagency Wetland Policy Act
- IDNR Threatened and Endangered Species signoff
- Illinois Historical Preservation Agency
- Kane-DuPage Soil and Water Conservation District
- DuPage County Stormwater Management Permit
- Village of Oak Brook

#### X. FUNDING OPPORTUNITIES

Potential funding sources exist through the following sources. For more information about each grant opportunity and project eligibility, please see Appendix G.

- DuPage County Water Quality Improvement Program (WQIP) Funds
- Environmental Protection Agency Section 319h
- Environmental Protection Agency Green Infrastructure Grant Opportunity
- DuPage River Salt Creek Workgroup (DRSCW)
- Illinois Department of Transportation Wildlife Crossing Discretionary Grant Pilot Program (WCPP)

A site visit was conducted with a representative from the DRSCW to evaluate the project. Even though this proposed project did not include total dam removal it would be evaluated by DRSCW and if funding was available may be considered. In addition, ERA staff called Illinois Department of Transportation (IDOT) staff to discuss the WCPP grant and the IDOT staff member indicated this is the type of project they would consider for funding.



#### XI. RECOMMENDED SCOPE OF WORK

Based upon the existing condition of the water control structure, the recommended scope of work is Alternative #2A or Alternative #3A. These alternatives include complete dam replacement, grade separation between the proposed dam and path utilizing a new pedestrian bridge, and the creation of step pools downstream of the dam.

The proposed bridge design is comprised of a single-span, prefabricated steel pedestrian bridge with a cast-in-place concrete deck on pile supported abutments. The proposed dam design includes a new dam located west of the proposed pedestrian structure consisting of permanent steel sheet piling with concrete facing. The proposed stream improvements include step pools downstream of the dam, which accommodate fish passage.

The estimated construction cost for Alternative #2A is \$1,205,900, which includes the dam bridge, path, and stream improvements for the project.

The estimated construction cost for Alternative #3A is \$1,203,900, which includes the dam bridge, path, and stream improvements for the project.

14



#### **APPENDIX A** Location Map

Engineering Resource Associates, Inc.







#### APPENDIX B Cost Estimates

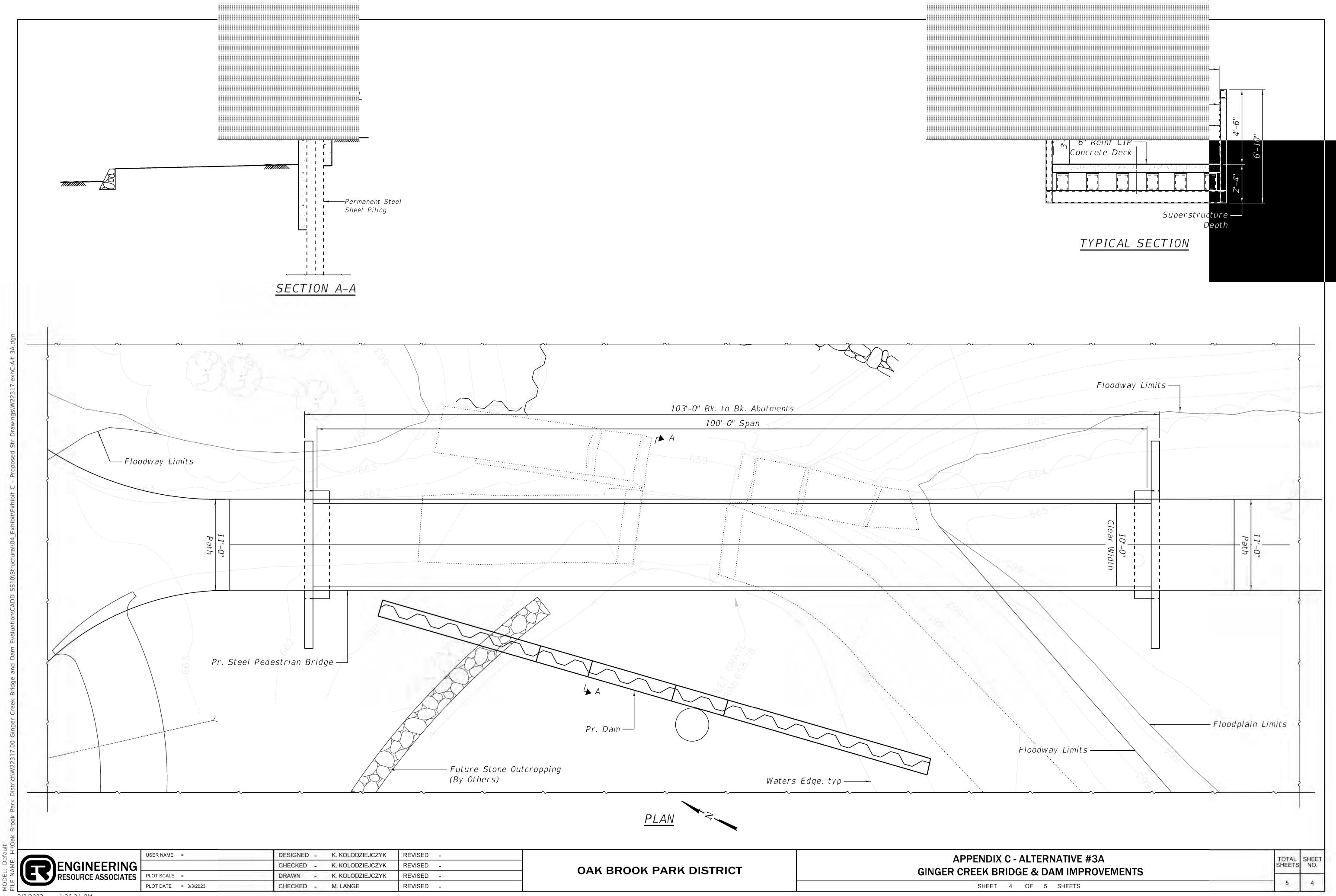
Engineering Resource Associates, Inc.



#### ALTERNATIVE #3A - NEW PEDESTRIAN BRIDGE, DAM AND STEP POOLS ALTERNATIVE #3B - NEW PEDESTRIAN BRIDGE, DAM AND SLOPED WALLS (SKEWED BRIDGE ALIGNMENT)

CODE	ITEM	UNIT	QUANTITY	UNIT COST	COST
20200100	EARTH EXCAVATION	CU YD	348	\$65	\$22,619
21001000	GEOTECHNICAL FABRIC FOR GROUND STABILIZATION	SQ YD	274	\$3	\$822
21101505	TOPSOIL EXCAVATION AND PLACEMENT	CU YD	86	\$35	\$2,996
35102000	AGGREGATE BASE COURSE, TYPE B 8"	SQ YD	274	\$17	\$4,658
40604050	HOT-MIX ASPHALT SURFACE COURSE, IL-9.5, MIX "C", N50	TON	43	\$475	\$20,425
44000100	PAVEMENT REMOVAL	SQ YD	196	\$10	\$1,960
50200100	STRUCTURE EXCAVATION	CU YD	35.0	\$75	\$2,625
50300225	CONCRETE STRUCTURES	CU YD	31.1	\$1,800	\$56,067
50300255	CONCRETE SUPERSTRUCTURE	CU YD	19.0	\$2,300	\$43,700
50300260	BRIDGE DECK GROOVING	SQ YD	113	\$20	\$2,260
50300300	PROTECTIVE COAT	SQ YD	215	\$8	\$1,720
50301350	CONCRETE SUPERSTRUCTURES (APPROACH SLAB)	CU YD	8.5	\$1,400	\$11,900
50800205	REINFORCEMENT BARS, EPOXY COATED	POUND	11,760	\$3.0	\$35,280
51200957	FURNISHING METAL SHELL PILES 12" X 0.250"	FOOT	200	\$175	\$35,000
51202305	DRIVING PILES	FOOT	200	\$1	\$200
51203200	TEST PILE METAL SHELLS	EACH	2	\$9,600	\$19,200
52200015	PERMANENT SHEET PILING	SQ FT	1,580	\$60	\$94,800
58600101	GRANULAR BACKFILL FOR STRUCTURES	CU YD	22	\$90	\$1,980
58700300	CONCRETE SEALER	SQ FT	104	\$7	\$728
59100100	GEOCOMPOSITE WALL DRAIN	SQ YD	18	\$50	\$900
60100060	CONCRETE HEADWALL FOR PIPE UNDERDRAINS	EACH	2	\$700	\$1,400
60146304	PIPE UNDERDRAINS FOR STRUCTURES 4"	FOOT	90	\$35	\$3,150
67100100	MOBILIZATION	L SUM	1	\$45,000	\$45,000
X0322508	PEDESTRIAN TRUSS SUPERSTRUCTURE	SQ FT	1,000	\$340	\$340,200
X0426200	DEWATERING	L SUM	1	\$3,750	\$3,750
X0900071	SHEET PILE REMOVAL (SPECIAL)	SQ FT	1,080	\$22	\$23,760
X2850001	REVETMENT MAT REMOVAL	SQ YD	155	\$75	\$11,625
X5010205	REMOVAL OF EXISTING STRUCTURE (SPECIAL)	EACH	1	\$35,930	\$35,930
X7010216	TRAFFIC CONTROL AND PROTECTION, (SPECIAL)	L SUM	1	\$3,750	\$3,750
Z0013798	CONSTRUCTION LAYOUT	L SUM	1	\$7,750	\$7,750

SUBTOTAL =	\$836,154
20% MISC =	\$167,231
TOTAL =	\$1.004.000


STEP POOLS =	\$199,900
TOTAL 3A =	\$1,203,900

SLOPED WALL = \$242,300 TOTAL 3B = \$1,246,300



#### **APPENDIX C** Proposed Structure Drawings

Engineering Resource Associates, Inc.



3/3/2023 1:36:34 PM



#### **APPENDIX D** Structure Photographs

Engineering Resource Associates, Inc.







Photograph 1: Downstream face of the structure – Looking east



Photograph 2: Spider cracking in north approach slab & debris buildup on grate







Photograph 3: Approach path – Looking north



Photograph 4: South gabion wall and south approach path - Looking east







Photograph 5: East face of northern gabion wall - Looking south



Photograph 6: Rock displacement, wire distortion and corrosion at gabion wall







Photograph 7: Rock displacement, wire distortion and corrosion at gabion wall



Photograph 8: West face of north concrete & gabion retaining wall - Looking east







Photograph 9: Sheet pile retaining wall - Looking northeast



Photograph 10: Pitting & scaling of steel and visible holes on face of sheet pile wall







Photograph 11: Steel scaling, section loss and visible holes on face of sheet pile wall



Photograph 12: Deterioration of steel sheet pile retaining wall







Photograph 13: East end of sheet pile retaining wall - Looking southeast



Photograph 14: Voids between the top plate and sheet piling







Photograph 15: Eroded backslope behind the sheet pile wall



Photograph 16: Vegetative growth and slope erosion at the top of wall







Photograph 17: Exposed top of deck at north abutment - Looking west



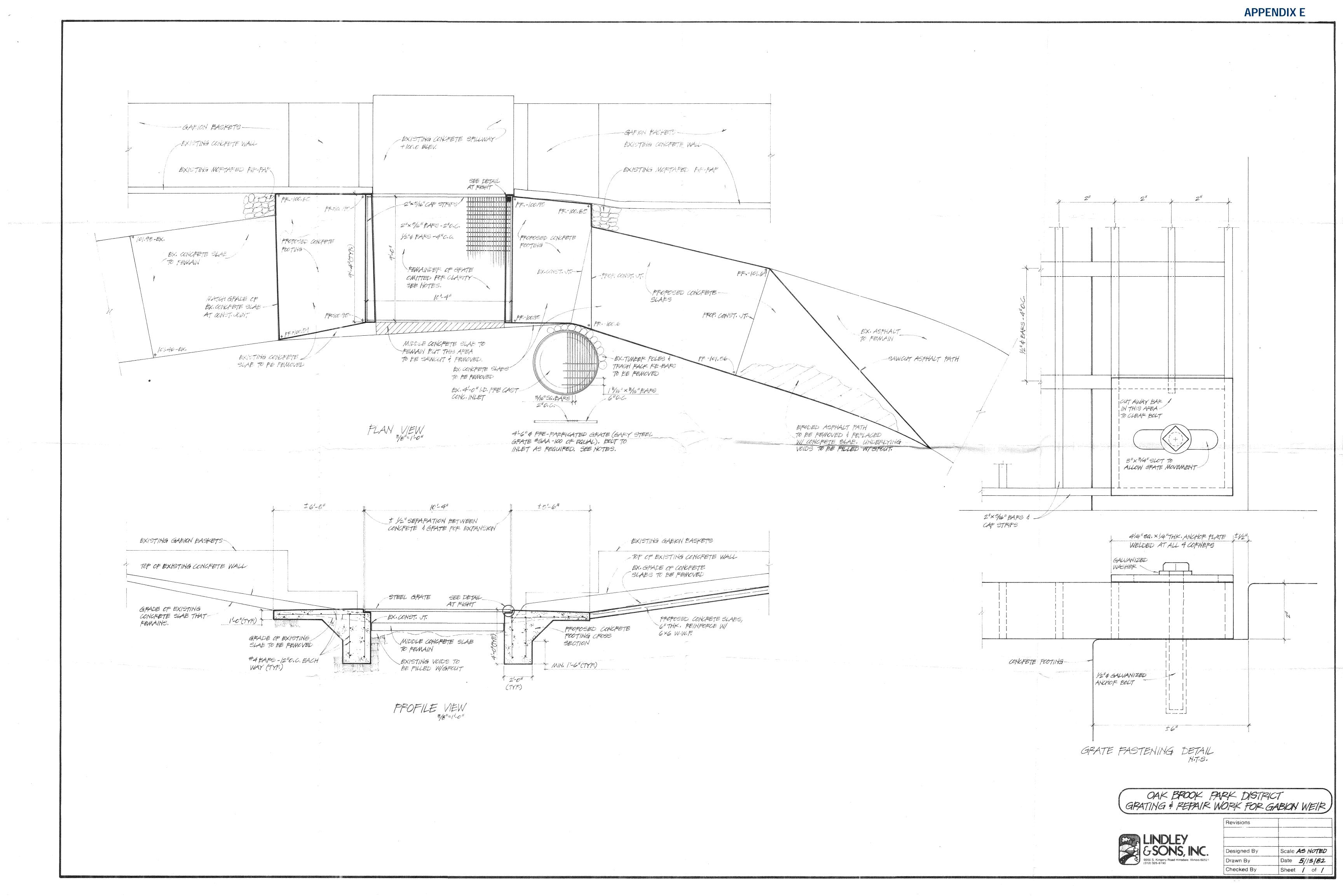
Photograph 18: Debris buildup on grate & water swirling at north footing

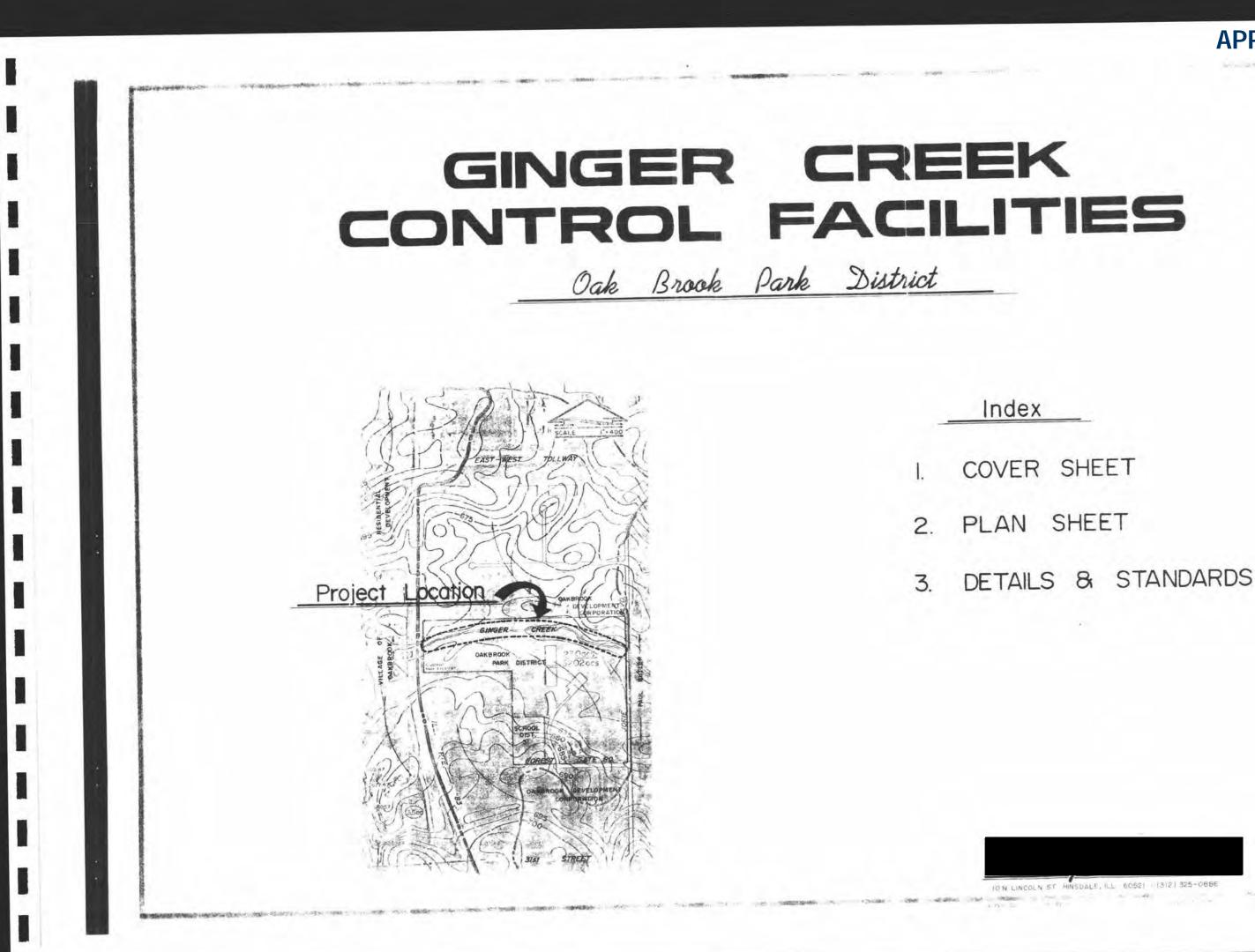




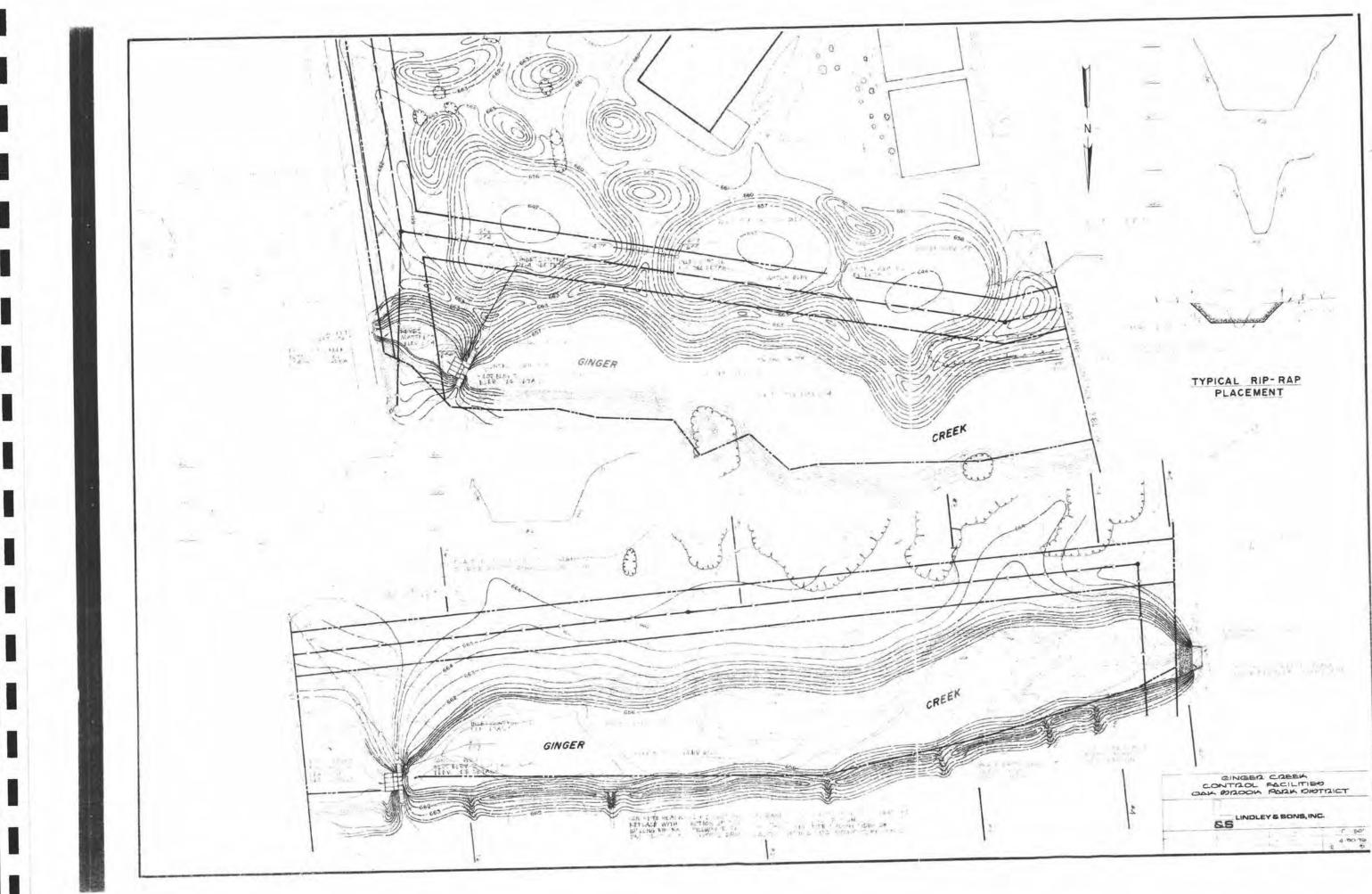


Photograph 19: CIP concrete mattress on downstream side of structure - Looking west

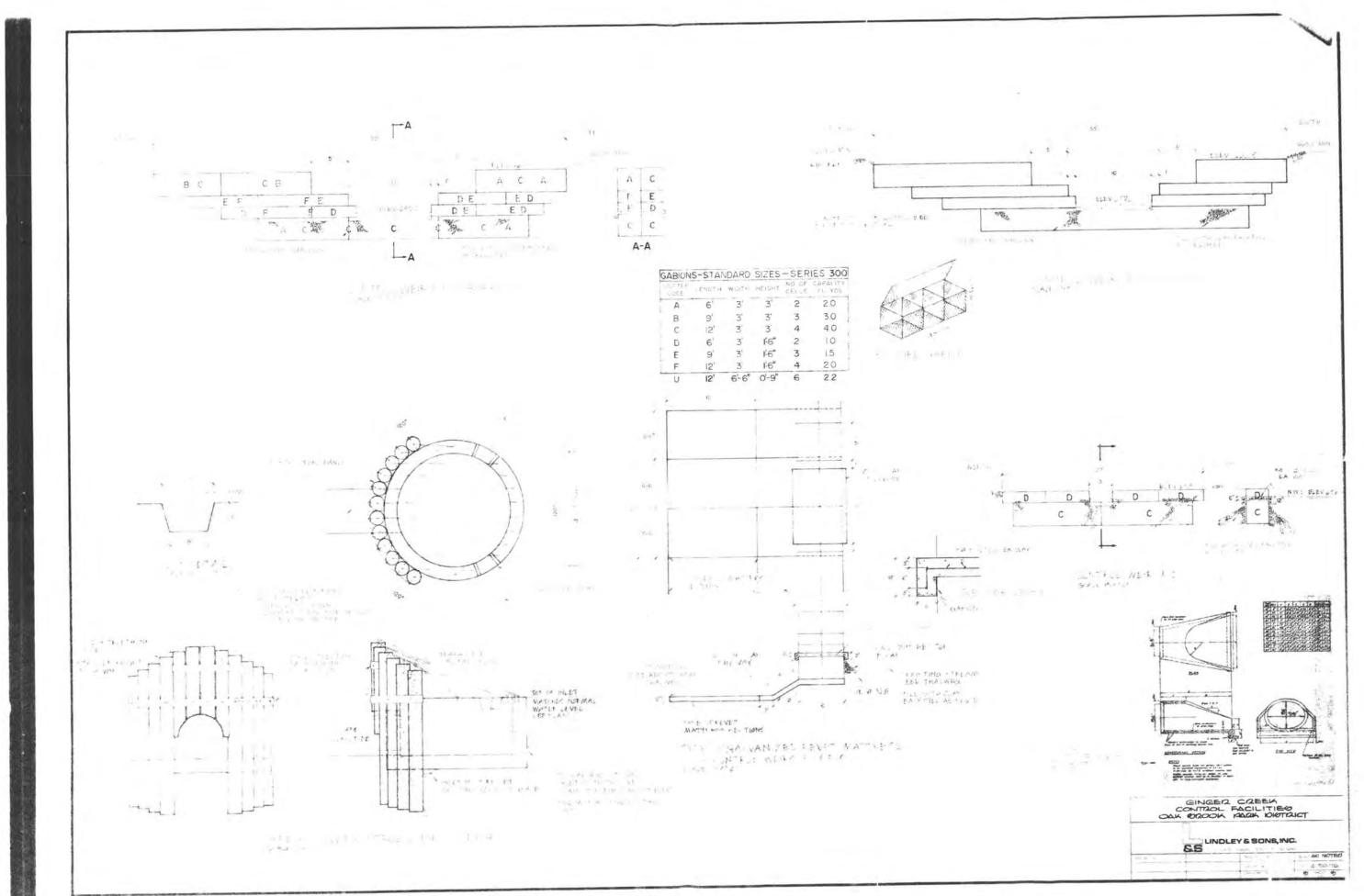




Photograph 20: Debris at upstream face of structure - Looking west




#### **APPENDIX E** Existing Plans

Engineering Resource Associates, Inc.










### **APPENDIX E**



### **APPENDIX E**



#### APPENDIX F Permit Matrix

Engineering Resource Associates, Inc.





AGENCY PERMITTING INFORMATION						
Agency Name	United States Army Corps of Engineers	Illinois Department of Natural Resources – Office of Water Resources				
Type of Permit	Nationwide Permit #s 13 & 27	IDNR-OWR (Part 3708) Floodway Construction Permit				
Permitting Submittal Requirements	<ul> <li>Joint Application (USACE, IDNR, IEPA )</li> <li>NWP Narratives</li> <li>Engineering Plans</li> <li>Wetland Delineation Report</li> <li>Section 7 T&amp;E Species Consultation</li> <li>WOTUS/Wetland Impact Plan</li> </ul>	<ul> <li>Joint Application (USACE, IDNR, IEPA)</li> <li>Engineering Plans</li> <li>H&amp;H Model</li> </ul>				
Anticipated Review Time	3 to 6 Months	3 to 6 Months				
Anticipated Permitting Fee	No Cost	\$200 to \$5,000				

AGENCY PERMITTING INFORMATION						
Agency Name	Illinois Department of Natural Resources – Office of Water Resources	Illinois Department of Natural Resources				
Permitting Submittal Requirements	<ul> <li>Joint Application (USACE, IDNR, IEPA)</li> <li>Engineering Plans</li> <li>Hydraulic Model</li> <li>Option 1 – Not Required</li> </ul>	EcoCAT Consultation				
Type of Permit	IDNR-OWR (Part 3702) Dam Construction & Maintenance Permit	Threatened & Endangered Species Signoff				
Anticipated Review Time	3 to 6 Months	10 Days				
Anticipated Permitting Fee	\$200 to \$5,000	\$125 (may be waived if applying if state funds are used)				



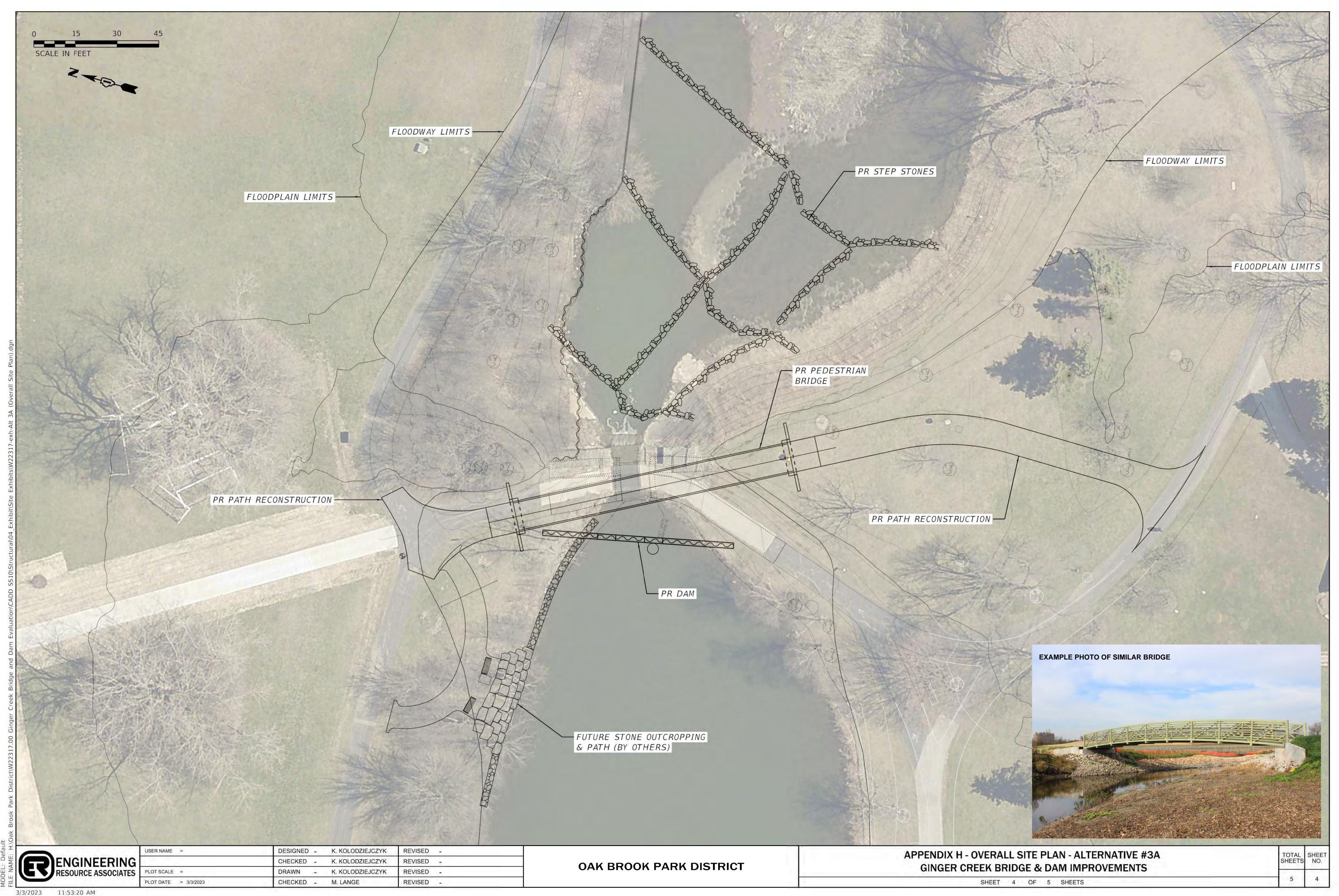


AGENCY PERMITTING INFORMATION						
Agency Name	Illinois Department of Natural Resources	Illinois Environmental Protection Agency (NOI)				
Permitting Submittal Requirements	<ul> <li>EcoCAT Consultation (only required if state funds are used)</li> </ul>	<ul> <li>Application</li> <li>SWPPP Plans</li> <li>Historic Preservation Approval Letter</li> <li>EcoCAT Consultation Signoff</li> </ul>				
Type of Permit	Interagency Wetland Policy Act	Construction Site Runoff (ILR10)				
Anticipated Review Time	10 Days	2 Months				
Anticipated Permitting Fee	\$O	\$250				

AGENCY PERMITTING INFORMATION							
Agency Name	Illinois Environmental Protection Agency	Illinois Historical Preservation Agency					
<ul> <li>Joint Application (USACE) (USACE will issue this permit unless greater than 1000 ft of bank stabilization is proposed. If greater than 1000 ft of stabilization is proposed, then an individual 401 WQP is required.)</li> </ul>		<ul> <li>Digital Submittal</li> <li>Cover Letter</li> <li>Location Map</li> <li>Engineering Plans</li> </ul>					
Type of Permit	404 Permit/401 Permit	Historic Preservation					
Anticipated Review Time 3 Months		1 Month					
Anticipated Permitting Fee	No Fee < 1000 ft (10% up to \$10,000 if individual 401 required)	No Fee					






	AGENCY PERMITTING INFORMATION							
Agency Name	Kane-DuPage Soil & Water Conservation District	Village of Oak Brook						
Permitting Submittal Requirements• Application • Narrative 		<ul> <li>Stormwater Application</li> <li>Stormwater Report</li> <li>H&amp;H Model</li> <li>Wetland Delineation Report</li> <li>Engineering Plans</li> </ul>						
Type of Permit	Soil Erosion & Sediment Control	Stormwater Management Permit						
Anticipated Review Time	1 Month	1 to 3 Months						
Anticipated Permitting Fee	\$3,000 to \$5,000	\$1,000 to \$3,000						

AGENCY PERMITTING INFORMATION						
Agency Name	Village of Oak Brook	DuPage County Stormwater Management				
Permitting Submittal Requirements	<ul><li> Application</li><li> Engineering Plans</li></ul>	<ul> <li>Stormwater Application</li> <li>Stormwater Report</li> <li>H&amp;H Model</li> <li>Engineering Plans</li> </ul>				
Type of Permit	Building Permit	Stormwater Floodway Permit				
Anticipated Review Time	1 to 3 Months	1 to 3 Months				
Anticipated Permitting Fee	\$1,000 to \$3,000	\$8, 395 to \$11,000				



#### **APPENDIX H** Overall Site Plans

Engineering Resource Associates, Inc.

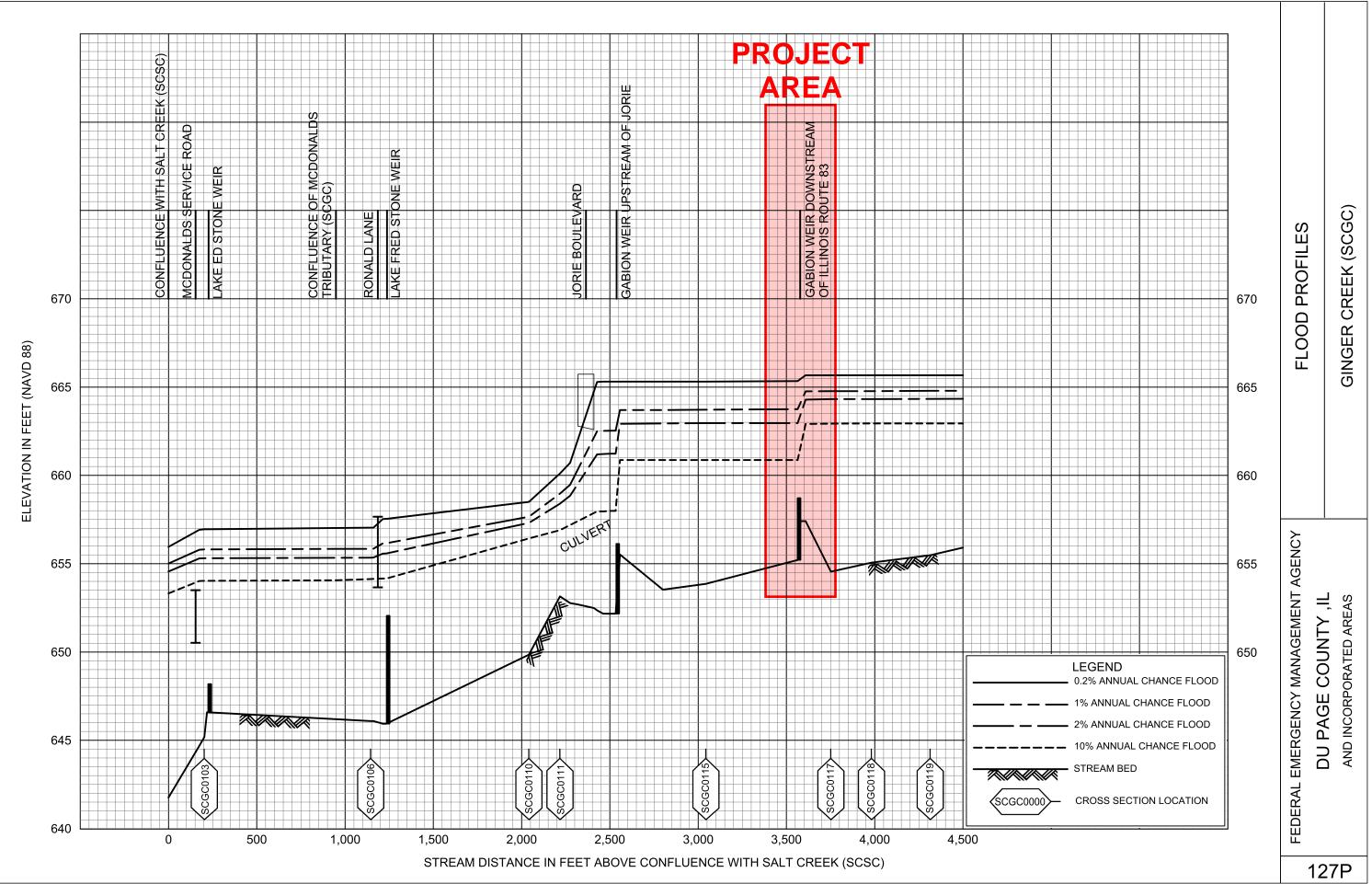




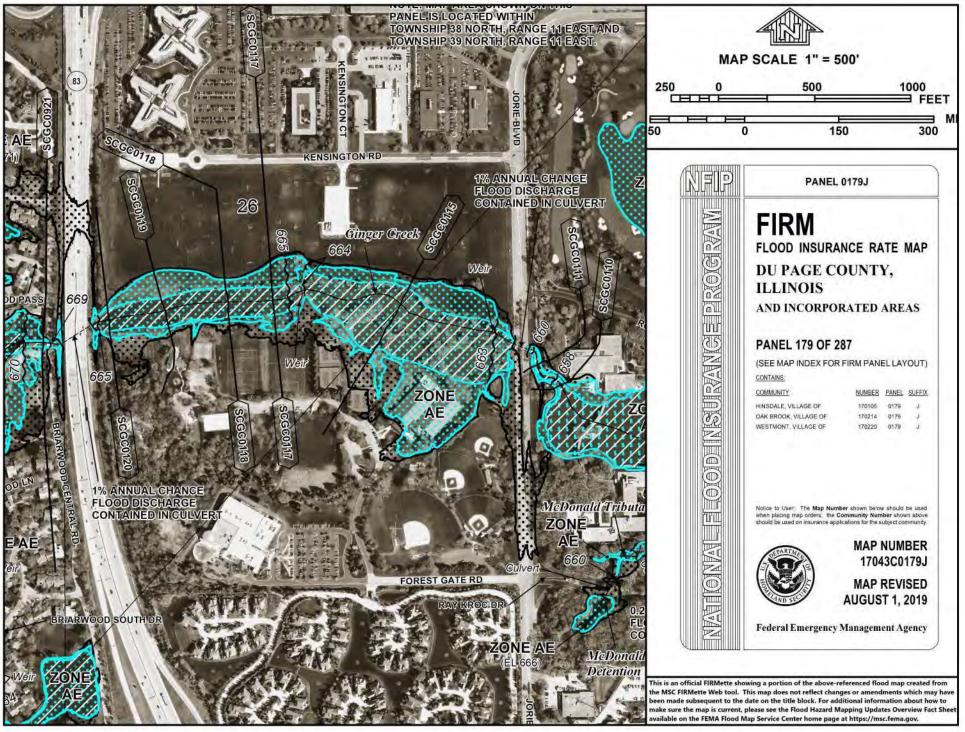


### **APPENDIX I**

Regulatory Hydraulic Output and Floodplain Location Maps

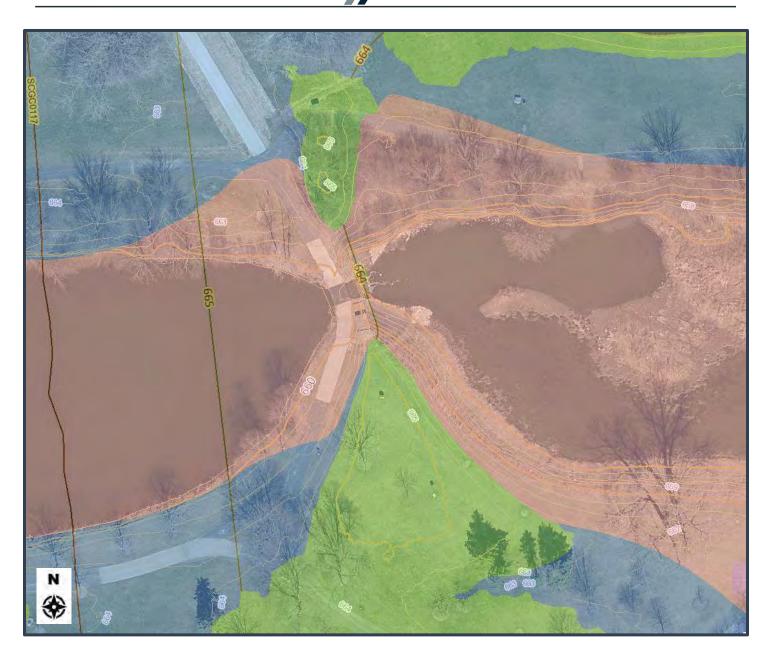

Engineering Resource Associates, Inc.

# **APPENDIX I : REGULATORY HYDRAULIC OUTPUT**


Ρ

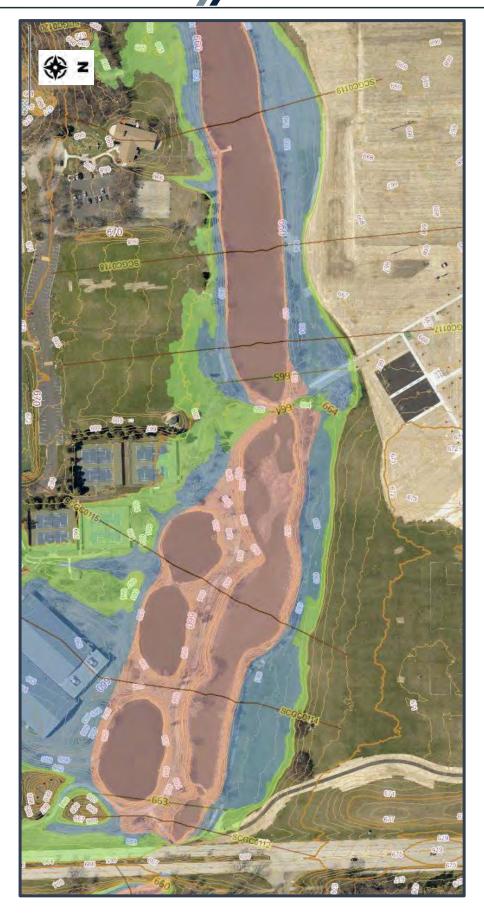
DU PAGE C DU PAGE C AND INCORPO 1				•	EAS		GINGE		(SCGC)	
TA		FEDERAL EMERG			BENCY		FLC	ODWAY	DATA	
	¹ Fee	t above confluence v	with Salt Creek (S	SCSC)						
l l		SCGC3101	9,225	90	293	2.3	687.1	687.1	687.2	0.1
		SCGC0240	8,705	39	85	7.8	677.2	677.2	677.3	0.1
		SCGC0239	8,389	32	147	4.7	674.2	674.2	674.3	0.1
		SCGC0238	7,876	220	1,564	0.5	673.9	673.9	674.0	0.1
		SCGC0236	7,549	56	106	7.0	673.1	673.1	673.2	0.1
		SCGC0235	7,349	27	146	5.1	670.5	670.5	670.6	0.1
		SCGC0233	6,990	135	1,010	0.7	670.5	670.5	670.6	0.1
		SCGC0232	6,768	149	1,263	0.6	670.5	670.5	670.6	0.1
		SCGC0231	6,565	32	280	2.6	670.5	670.5	670.6	0.1
		SCGC0230	6,426	92	656	0.9 1.1	670.5	670.5	670.6	0.1
		SCGC0120	4,985	31	044 172	6.9	669.3	669.3	669.4	0.1
		SCGC0120	4,314 4,611	150 115	1,212 844	1.0 1.4	664.8 664.8	664.8 664.8	664.9 664.9	0.1
- <b></b> /	-	SCGC0118	3,982		1,265		664.8 664.8	664.8 664.8	664.9 664.9	0.1
REA		SCGC0117 SCGC0118	3,752	145 151	1,248	1.0 1.0	664.8 664.8	664.8 664.8	664.9 664.9	0.1
JE		SCGC0115	3,044	346	2,604	0.5	663.7	663.7	663.8	0.1
	СТ	SCGC0111	2,217	27	123	10.7	659.0	659.0	659.1	0.1
		SCGC0110	2,041	36	190	7.0	657.7	657.7	657.8	0.1
		SCGC0106	1,145	62	482	3.0	655.8	655.8	655.9	0.1
		SCGC0103	203	137	637	2.4	655.8	655.8	655.9	0.1
	Ginge	er Creek (SCGC)								
		Creek Watershed - continued								
		ROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
-		FLOODING SO			FLOODWA		WATER S	URFACE ELEVATION (FEET NAVD88)		

## **APPENDIX I : REGULATORY HYDRAULIC OUTPUT**




### **APPENDIX I : FLOODPLAIN LOCATION MAP**

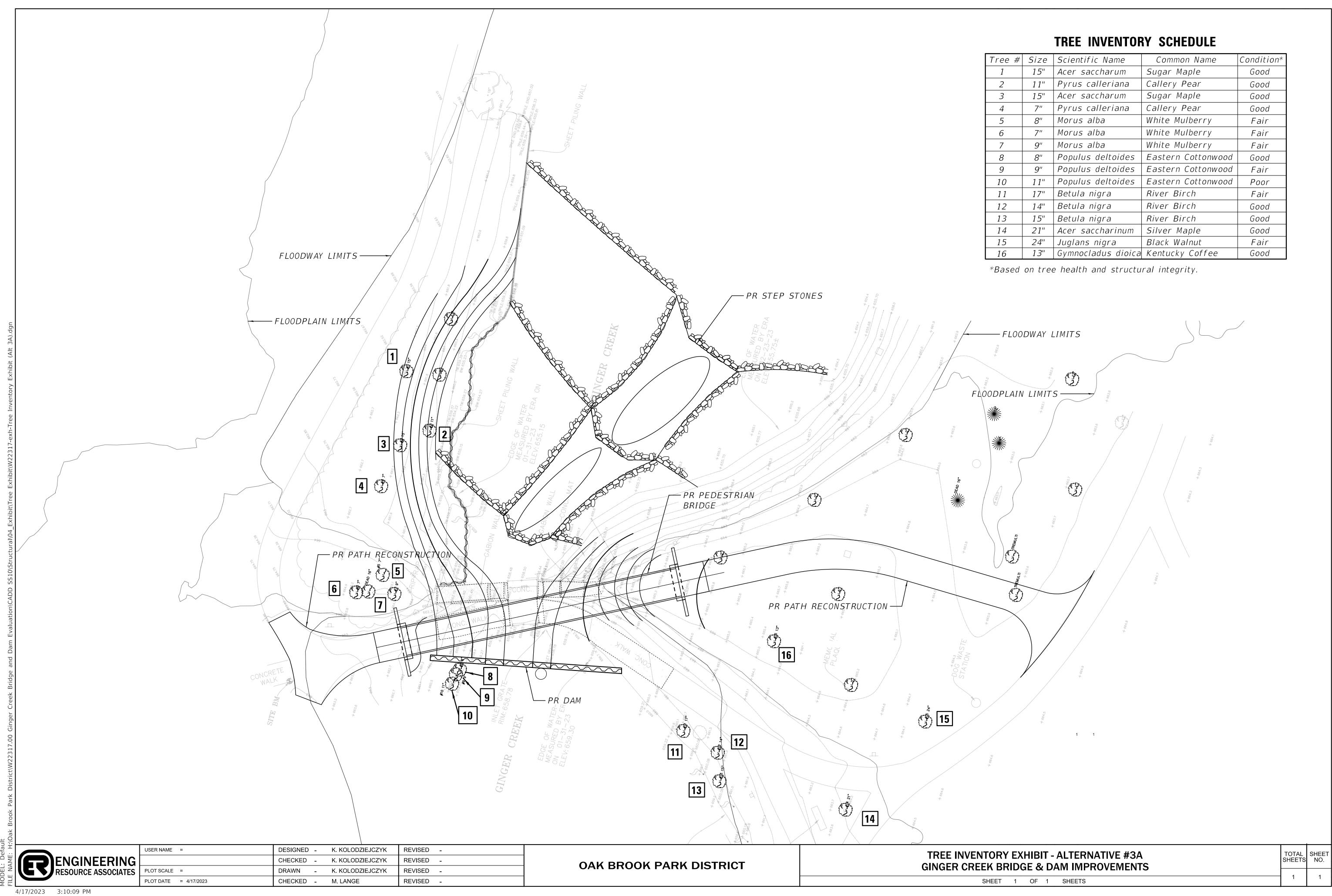





#### APPENDIX I: FLOODPLAIN AT CENTRAL PARK






### APPENDIX I: FLOODPLAIN AT CENTRAL PARK





#### **APPENDIX J** Tree Inventory Plan

Engineering Resource Associates, Inc.



		TREE INVENTOR	RY SCHEDULE	
Tree #	Size	Scientific Name	Common Name	Condition*
1	15"	Acer saccharum	Sugar Maple	Good
2	11"	Pyrus calleriana	Callery Pear	Good
3	15"	Acer saccharum	Sugar Maple	Good
4	7"	Pyrus calleriana	Callery Pear	Good
5	8"	Morus alba	White Mulberry	Fair
6	7"	Morus alba	White Mulberry	Fair
7	9"	Morus alba	White Mulberry	Fair
8	8"	Populus deltoides	Eastern Cottonwood	Good
9	9"	Populus deltoides	Eastern Cottonwood	Fair
10	11"	Populus deltoides	Eastern Cottonwood	Poor
11	17"	Betula nigra	River Birch	Fair
12	14''	Betula nigra	River Birch	Good
13	15"	Betula nigra	River Birch	Good
14	21"	Acer saccharinum	Silver Maple	Good
15	24"	Juglans nigra	Black Walnut	Fair
16	13"	Gymnocladus dioica	Kentucky Coffee	Good



#### **APPENDIX K**

Hydrologic and Hydraulic Analysis

Engineering Resource Associates, Inc.

7	
SITE	В





REVISIO	NS:						
DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	<i>drawn by</i> : C.B./A.J.	
						CHECKED BY: K.A.	RESOURCE

INEERING<br/>RCE ASSOCIATES3S701 WEST AVENUE, SUITE 150<br/>WARRENVILLE, ILLINOIS 60555<br/>PHONE (630) 393-3060<br/>FAX (630) 393-215210 S. RIVERSIDE PLAZA, SUITE 875<br/>CHICAGO, ILLINOIS 60606<br/>PHONE (312) 474-7841<br/>FAX (312) 474-6099

2416 GALEN DRIVE CHAMPAIGN, ILLINOIS 61821 PHONE (217) 351-6268 FAX (217) 355-1902

OAK BROOK PARK DISTRIC OAK BROOK, ILLINOIS

SITE BENCHMARK CUT CROSS IN SOUTHWEST CORNER OF SIDEWALK LOCATED NORTH OF THE ASPHALT PATH NORTH OF GINGER CREEK.
ELEV: 663.09 (NAVD 88)

PROFESSIONAL DESIGN FIRM NUMBER: 184.001186 LICENSE EXPIRES APRIL 30, 2023

	<i>SCALE</i> : 1"=20'
CT H&H CROSS SECTION	DATE: APRIL, 2023
	<i>JOB NO</i> : W22314
LOCATION EXHIBIT	
	SHEET10F1

675 NOF	RTH BAI	NK																									SOUT	ΉE
670																												
665				100-YE	AR BFE	= 664.8																						
660				10-YE	AR BFE	= 662.9																		-				
655					/	, <b></b>																						
650 100 90	80 7	70 60	50 4	40 3	0 2		1+5			20	30	40	50	60	70 8	BO 90		00 1'	10 1	20 1	30	140	150 1	60	170	180 1	90 20	
675 NOR		NK					1													1						SOUTH	BANK	67
670																												67
665			YEAR BFE												<u></u>				<b></b>								<b></b>	66
660		10-		= 662.9																								66
655																												65
650 100 90	80 7	70 60	50 4	40 3	0 2	0 1	1+3			20	30	40	50	60	70 8	30 90	) 1	00 1	10 1	20 1	30	140	150 1	60	170	180 1		65
675 NO	RTH BA	.NK																1							SOUT	H BANK	675	
675 NO	RTH BA	NK																							SOUT	H BANK	675 670	
670 665 100-YE	AR BFE =	• 664.8																								H BANK		
670 665 100-YE		• 664.8																								H BANK	670	
670 665 100-YE	AR BFE =	• 664.8																								H BANK	670 665	
670 6655 <u>100-YE</u> 6660 6555	AR BFE =	= 664.8' = 662:91	50	40 3						20	.30	40	50							20 1	-30	140	150 1				670 665 660 655	
670 6655 <u>100-YE</u> 6660 655 650 100 90	AR BFE =	664.8 662.9 70 60	50	40 3	0 2	0				20	30	40	50		70 8	30 90	) 1 ¹	00 1		20 1	30	140		60	170		670 665 655 650 90 20	)0
670 6655 <u>100-YE</u> 6660 655 650 100 90	AR BFE	664.8 662.9 70 60	100-1	EAR BFE	≠:664.8'					20	30	40	50		70 8	30 90		00 1		20 1	30	140		60	170	180 1	670 665 655 650 90 20	00
670 6655 6650 100 90 670 NO	AR BFE	664.8 662.9 70 60	100-1		≠:664.8'					20	30	40	50		70 8	30 90		00 1		20 1	30	140		60	170	180 1	670 665 655 650 90 20	00
670 6655 655 650 100 90 6655 6650 100 90	AR BFE	664.8 662.9 662.9 70 60	100-1	EAR BFE	≠:664.8'					20	30	40	50		70 8					20 1	30	140		60	170	180 1	670 665 650 90 20 670 665	00
670 6655 6650 100 90 6655 6660 6655 6650 6655 655	AR BFE =	664.8 662.9 662.9 70 60	1:00-Yi	EAR BFE	<u>≠ :664.8'</u> = 662.9'		io ( 1-1-0	) 1 	10					60										60	170	180 1	670 665 655 650 90 20 670 665 665	

	675	NOR	TH BAI	NK																																							SOU	ITH E
	670																																											
	<u>665</u>							1	00-YE	AR BFI	E = 6	64.8																-																
	660						/ /			AR BFI							7	^																					<u>+-</u>					
	655											<b>.</b>			<u> </u>																													
100	650 D 9	0	<u> </u>	/0	60	5	<u> </u>	40	3	0	20	1	<b>1</b> -	+51	I.OC	) 10	2	<u>-</u>	30	4	<u> </u>	50		60	70	8	0	90	10	0	110	1	20	130	14	10 1	50	160	0	170	18(	0 1	90 2	200
			TH BAN					+0	U 		20		1::::				2 \ 							· [ · · · · · · ·		0										r0 I							I BANK	
	670																																											67
	665						<u>ar b</u> f Ar bf																																				<b></b>	66
	660	· · · · · ·							62.9	••••							_			/																								66
	655																																											65
100	650					F	<u> </u>	40	7	0					4.00			<u> </u>	70								-			<u> </u>	110			170								0 1		65 200
	5 8	0 8	30 7	0	60	5	0	40	3	0	20	I	0	0		10	2	J	30	4	0	50	6	50	70	8	0	90	10	0	110		20	130	14	10	50	160	0	170	180		90 2	200
			.TH BA		60	С	0	+0	ري. ا	U 	20	I					2	<b>,</b>	30	4	0	50	6	50	70	8	0	90					20		12	HO 1	50	16					675	
		NOR			60	C					20								30	4	0	50	6	50	70	8	0	90					20		12	HO 1	50	160						)
	<u>675</u>	NOR 100-YE	TH BA	NK 664.8'		C														4	0	50	6		70		0	90								HO 1	50						675	
	<u>675</u>	NOR 100-YE	TH BA	NK 664.8'		C														4				50			0										50						675 670	
	675 670 665	NOR 100-YE/	TH BA	NK 664.8'		C																															50						675 670 665	
	675 670 665 655	NOR 100-YE/	TH BA	NK 664.8 ⁴ 662.9 ⁴		5		40	3		20						2		30									90	10					130			50	160				BANK	675 670 665 655	
100	675 670 665 655	NOR 100-YE/ 10-YE/ 0 8	TH BA	NK 664.8' 662.9' 70																																			S	SOUT	ГН В 	BANK	675 670 665 655	200
100	675 670 665 655 650 5	NOR 100-YE/ 10-YE/ 0 8	TH BA	NK 664.8' 662.9' 70			0	40	3		20																												S	SOUT	ГН В 	BANK	675 670 665 665 650 90	200
100	675 670 6655 655 650 5 9	NOR 100-YE/ 10-YE/ 0 8	TH BA	NK 664.8' 662.9' 70	60	5	0	40	3 R BFE	0	20														70			90											S	SOUT	ГН В 	BANK	675 670 6655 655 90 2	
100	675 670 6655 655 650 5 9 670	NOR 100-YE/ 10-YE/ 0 8	TH BA	NK 662.9 662.9 70	60	5	0	40	3 R BFE	- - - - - - - - - - - - - - - - - - -	20						2								70	8	0	90	10										S	SOUT	ГН В 	BANK	675 670 665 665 90 2 670 665	200
100	675 670 6655 655 650 0 9 655 655 655	NOR 100-YE/ 10-YE/ 0 8		NK 662.91 70	60	5	0	40	3 R BFE		20				). O(		2			4	0		e		70	8	0	90	10	0			20		12	Ю 1				SOUT	ГН В 	BANK	675 670 665 665 650 90 2 665 665 655 655	200

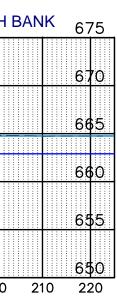
675	NORT	TH BAN	١K																										SOUTH
670																													
665						100-Y	EAR BFE	= 664.8'																					
660					$\frac{1}{t}$			1	1		/		7												   				
655							/	V	1	<u> </u>																			
650 100		80 7	0 6	0 5		-0 ·	30 2		1+5 0 (			20 3	30 4	-0 5	50 E	50 <del>-</del>	/ /0 8	io 9	0 10	00 1	10	120 1	<b>3</b> 0 1	40 1	50 16	60	170 1	80 1	90 200
675	NORT	TH BAN	IK								1		1::::::::::				1			1				1::::::::::			;	SOUTH	BANK
670																													
665					AR BFE AR BFE													<b></b>	<u></u>										<b></b>
660						= 662.9							<b>, , , ,</b>																
655																													
650		80 7	06	0 5	0 4	-0	30 2	:0 1		<b>4.00</b>	:::::::	20 3	30 4	-0 5	jo 6	<u> </u>	/0 8	60 S	0 10	00 1	10	120 1	30 1	40 1	50 16	50 · ·	170 1	80 1	90 200
675	NOR	TH BAI	NK																										
670																										S	SOUTH	BANK	675
665																										S	SOUTH	BANK	675 670
	100-YEA	R.BFE ⊨ R:BFE =	664.8' 662:9'																							S		BANK	
660	10-YEA	R BFE ≡ R BFE ≡	664.8' 662.9 <u>'</u>																									BANK	670
660 655	<u>10-YEA</u>	<u>R BFE ⊨</u> R BFE =	664.8' 662.9																									BANK	670 665
655 650		<u>R BFE </u> <u>R BFE</u> = <u>R BFE} = <u>R BFE</u> = </u>	662:9	0 5	0 4	-O	30 2					20 3					20 8	0 9	0 11		10	120 1	30 1	40 1	50 16				670 665 660
655 650	90 8	<u>R</u> BFE =	0 6	0 5	0 4	-O	30 2	0 1				20			50 6		0 8		0 10	DO 1	10	120 1	30 1	40 1	50 16	50	170 1		670 665 655 650 90 200
655 650	90 8	<u>R BFE ⊨</u> 007	0 6	0 5			30 2 ■=:664.8					20			50 6		20 8				10		30 1	40 1	50 16	50	170 1	80 1	670 665 655 650 90 200
<u>655</u> 650	90 8	<u>R BFE ⊨</u> 007	0 6	0 5	100-Y	EAR BF						20			50 e		8 0		0 1		10		30 1	40 1	50 16	50	170 1	80 1	670 6655 650 90 200
655 650 100 665	90 8	<u>R BFE ⊨</u> 007	662.9 0 6	0 5	100-Y	EAR BF	<b>⊑</b> ≠:664.8														10		30 1	40 1	50 16	50	170 1	80 1	670 665 655 650 90 200
655 650 100 665 665 655	90 8	<u>R BFE</u> <u>=</u> 30 7 TH BAI	662.9 0 6		100-Y	EAR BF	<u>E</u> = 664.8 = 662.9		0 ( 1+0	D 1	0		30 4	-0 5												50		80 1:	670 6655 650 90 200 6655 660 665

75 NORT	H BANK	· · · · · · <b>i</b> · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·			<b>.</b>					1	. <b>.</b>			<b>.</b>			· <b>i</b> · · · · · · · ·						· <b>·</b> · · · · · · · · · · · · · · · · ·	SOI
70																										
65					100-YE	AR BFE	= 664.8'										÷									
0				,	10-YE	AR BFE	= 662.9																		· +- · ·	
55						//			~^\/																	
50								1+5	1.00																	
75 NORT	H BANK	·····										1											· <b>i</b> · · · · · · · · · · · ·	;	SOUTH	BAI
70																										
5					= <u>664.8'</u>											·····										
	·	1	0-YEA	R BFE	662.9																					
50													:													1 1 1 1 1
60																										
60 55 50 90 8	) 70	60	50	4	) 3	0 2	20 1	1+3	<b>4.00</b>	:::::::::	20 3	30 4	40 50	D 6	0 70 8	30 90	100	110	20	130	140	150 1	60 1	70 1	80	90
60 55 50 90 80 75 NOR 70 65 100-YEA 60 55 50 90 80 50 90 80	TH BANK 3.BFE = 664 3.BFE = 662 3.BFE = 662 0.70	8	50						4.00	D 2						30 90 30 90 30 90 30 90							S	OUTH	BANK	67 67 67 67 67 67 67 67
50 55 50 90 8 70 70 55 100-YEA 50 50 90 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 7 70 8 7 70 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 8 7 7 8 7 8 7 8 7 8 7 8 8 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	TH BANK <u>RBFE = 664</u> RBFE = 662	8	50	4	) 3	0 2			<b>4.00</b> 0 10	D 2													S	OUTH	BANK	6 6 6 6 90
50 55 50 90 8 70 55 100-YEA 50 55 50 90 8 50 50 90 8 50 50 90 8 50 50 90 8	TH BANK 3.BFE = 664 3.BFE = 662 3.BFE = 662 0.70	8	50	4- 1	) 3	0 2 ≠.664.8			<b>4.00</b> 0 10	D 2							100						S	OUTH	BANK	6 6 6 6 6 6 7 90
55 50 90 8 50 90 8 75 NOR [−] 70 55 100-YEA 10-YEA 50 90 8	TH BANK 3.BFE = 664 3.BFE = 662 3.BFE = 662 0.70	8	50	4- 1	) 3	0 2 ≠.664.8			<b>4.00</b> 0 10	D 2						30 90	100						S	OUTH	BANK	6 6 90

PROPOSED ELEVATIONS ARE BASED ON THE CONCEPT DESIGN DESCRIBED IN ALTERNATIVE 3A IN THE BRIDGE CONDITION & ALTERNATIVE ANALYSIS REPORT PREPARED BY ERA IN APRIL 2023.

ELEVATIONS WILL CHANGE IN DURING THE DESIGN OF THE BRIDGE ABUTMENTS, DAM LOCATION AND STREAM GRADING REQUIRED FOR LOW FLOWS AND FISH PASSAGE.

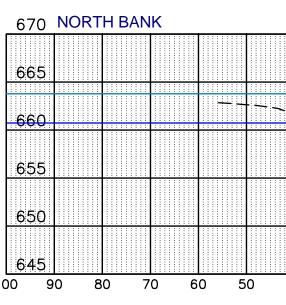
TO PROVIDE THE REQUIRED COMPENSATORY STORAGE FOR THE PROPOSED DAM AND BRIDGE IMPROVEMENTS, ADDITIONAL EXCAVATION ON THE SOUTH BANK THROUGH STATIONING 1+75 THROUGH 3+50 IS REQUIRED. THE CONCEPT FOR THIS DESIGN IS DEPICTED IN THE CROSS SECTIONS IN THIS EXHIBIT.


### THIS EXHIBIT IS NOT FOR PERMITTING PURPOSES.

REVISIO. DATE	NS: BY	DESCRIPTION	DATE	BY	DESCRIPTION	DRAWN BY: C.B./A.J.	
						<i>Checked by</i> : K.A. <i>Approved by</i> : K.A.	<b>ENGIN</b> RESOURCE

NEERING<br/>CE ASSOCIATES3S701 WEST AVENUE, SUITE 150<br/>WARRENVILLE, ILLINOIS 60555<br/>PHONE (630) 393-3060<br/>FAX (630) 393-215210 S. RIVERSIDE PLAZA , SUITE 875<br/>CHICAGO, ILLINOIS 60606<br/>PHONE (312) 474-7841<br/>FAX (312) 474-6099

2416 GALEN DRIVE CHAMPAIGN, ILLINOIS 61821 PHONE (217) 351-6268 FAX (217) 355-1902


### OAK BROOK PARK DIS OAK BROOK, ILLIN





ROFESSIONAL	DESIGN FIRM	NUMBER:	184.001186
ICENSE EXPIR	ES APRIL 30,	2023	

$D/STRICT$ $CROSS_SECTIONS$ $DATE:$ APRIL,		
DISTRICT CROSS—SECTIONS DATE: APRIL,	2023	yoo Y
VOIS PROFILE A	514	Ъ
SHEET 1 OF	2	\0ak



670	NORT	H BAN	IK		
665					
660					+++
655					
650					
645					
00 9	0 8	io 7	'0 6	50 S	50

70 NORTH		<		_					_			-					_			-					SOUT	ГН В	ANK	670	_										
65							1	100-YE	RBFE	= 663.7'																		665											
60			<u>-</u> -		<u> </u>	<u> </u>		<u>10-YE</u>	R BFE =	= 660.8'																		660											
66						/ \																			//			o e e											
55										+ +				<u> </u>			-			+								655											
50																												650											
45									3+5	50.0C																		645											
90 80	) 70	) 6	D 5	0	40	30	20			: : : : : : : : : :	10	20	30	4	0	50	60	70	) 8	80	90	100	11	0 1	20	130			50										
70 NORTH	H BANI	Κ							1::::::::														· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·									SO	UTH	BAN	IK
65																																							
50						1	00-YE	AR BF	= 663.7	7'																				<b>_</b>									
50					, / j	× .	10-YE	AR BF	<u>= 660.8</u>	3'																													
55																								/		_													
								~				/-		• +++							+																		
50																																							
45									2+5	5 <b>0.</b> 00																													
90 80	) 70	) 6	0 5	0	40	30	20	. (	10	0	10	20	30	4	0	50	60	70	3 (	30	90	100	11	0 1	20	130	14	0 1	50	160	170	18	0 1	190	200	210	0 2	220	230
75 NORTH	BAN	<b>&lt;</b>			: ::::::	::::::			1				::::										:::::		· <b>·</b> · · · · · · · ·		· · · · · · · · · ·		· · · · · · · · ·		· · · · <b>·</b> · · ·			S	OUTH	BAN	<u>NK 6</u>	75	
70																																					ß	70	
/U																																					U		
65							00-75		= 663.7	7'									<u>→</u> · <u>→ · · · · · · · · · · · · · · · · · </u>	-																	6	65	
60			• • •	<i>,</i>					= 660.8					-1																							6		
<del>,</del> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						+-	· S																														0	60	
55							[	<u>_</u>																													6	55	
								Ν,	┤╲╭╴	4_/	1																										A	50	
		<b>.</b>													1:::::::			::::i	<u></u>	: <b> </b> ::::::	:: <b> </b> :::::															:::: <b>:</b> [:`		ΨΨ	
50										5.00																										T.			1

PROPOSED ELEVATIONS ARE BASED ON THE CONCEPT DESIGN DESCRIBED IN ALTERNATIVE 3A IN THE BRIDGE CONDITION & ALTERNATIVE ANALYSIS REPORT PREPARED BY ERA IN APRIL 2023.

ELEVATIONS WILL CHANGE IN DURING THE DESIGN OF THE BRIDGE ABUTMENTS, DAM LOCATION AND STREAM GRADING REQUIRED FOR LOW FLOWS AND FISH PASSAGE.

TO PROVIDE THE REQUIRED COMPENSATORY STORAGE FOR THE PROPOSED DAM AND BRIDGE IMPROVEMENTS, ADDITIONAL EXCAVATION ON THE SOUTH BANK THROUGH STATIONING 1+75 THROUGH 3+50 IS REQUIRED. THE CONCEPT FOR THIS DESIGN IS DEPICTED IN THE CROSS SECTIONS IN THIS EXHIBIT.

### THIS EXHIBIT IS NOT FOR PERMITTING PURPOSES.

REVISION	VS:						<i>.</i>	
DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	<i>drawn by</i> : C.B	./A.J.	
						CHECKED BY:	К.А. К.А.	
						APPROVED BI:	K.A.	

INEERING<br/>RCE ASSOCIATES3S701 WEST AVENUE, SUITE 150<br/>WARRENVILLE, ILLINOIS 60555<br/>PHONE (630) 393-3060<br/>FAX (630) 393-215210 S. RIVERSIDE PLAZA , SUITE 875<br/>CHICAGO, ILLINOIS 60606<br/>PHONE (312) 474-7841<br/>FAX (312) 474-60992416 GALEN DRIVE<br/>CHAMPAIGN, ILLINOIS<br/>PHONE (217) 351-626<br/>FAX (217) 355-1902

CHAMPAIGN, ILLINOIS 61821 PHONE (217) 351-6268 FAX (217) 355-1902

OAK BROOK PARK DI OAK BROOK, ILLIN

PROFESSIONAL DESIGN FIRM NUMBER: 184.001186 LICENSE EXPIRES APRIL 30, 2023

	TITLE:	<i>SCALE</i> :1"=20'H, 1"=10'V [△]
DISTRICT	CROSS-SECTIONS	<b>DATE:</b> APRIL, 2023
NOIS	PROFILE A	<i>JOB NO</i> : W22314 ຫຼັ
11010	I NOTILL A	SHEET_2_0F_2_



Project: Ginger Creek Bridge Condition & Alternative Analysis Report

Project Location: Central Park, Oak Brook, DuPage Co, IL

ERA Project #: W22317.00

#### Date: 4/20/2023 Prepared By: MG

					Floodpla	ain FILL							Floodp	lain CUT			
Stat	tion	0-10 Yr	Average	Distance (Ft)	Volumo (CE)	10 -100 Yr	Average	Distance	Volume (CF)	0-10 Yr	Average	Distance	Volume (CF)	10 -100 Yr	Average	Distance	Volume
		(SF)	(SF)	Distance (Ft)	volume (CF)	(SF)	(SF)	(Ft)	Volume (CF)	(SF)	(SF)	(Ft)	volume (CF)	(SF)	(SF)	(Ft)	(CF)
0.0	1+00	0.0				0.0				0.0				0.0			
			156.8	17.0	2664.8		82.5	17.0	1402.5		0.0	17.0	0.0		0.0	17.0	0.0
17.0	1+17	313.5				165.0				0.0				0.0			
			313.5	4.0	1254.0		165.0	4.0	660.0		0.0	4.0	0.0		0.0	4.0	0.0
21.0	1+21	313.5				165.0				0.0				0.0			
			178.0	13.0	2313.4		82.5	13.0	1072.5		13.6	13.0	176.2		8.3	13.0	107.9
34.0	1+34	42.4				0.0				27.1				16.6			
			25.3	17.0	429.3		0.0	17.0	0.0		44.0	17.0	748.0		19.3	17.0	327.3
51.0	1+51	8.1				0.0				60.9				21.9			
			4.1	14.0	56.7		0.0	14.0	0.0		51.3	14.0	717.5		13.5	14.0	189.0
65.0	1+65	0.0				0.0				41.6				5.1			
			0.0	43.0	0.0		0.0	43.0	0.0		60.8	43.0	2614.4		15.1	43.0	647.2
108.0	2+08	0.0		-		0.0				80.0				25.0			
			0.0	42.0	0.0		0.0	42.0	0.0		92.4	42.0	3880.8		37.5	42.0	1575.0
150.0	2+50	0.0				0.0				104.8				50.0			
			0.0	100.0	0.0		0.0	100.0	0.0		52.4	100.0	5240.0		25.0	42.0	1050.0
250.0	3+50	0.0				0.0				0.0				0.0			
	0-10 YR FILL Subtotal = 6718.1 CF					10-100 YR	FILL Subtot	al = 3135.0 CF		0-10 YR (	UT Subtota	= 13376.9 CF		10-100 Y	R CUT Subtot	al = 3896.3 CF	

248.8 CY

116.1 CY

0-10 YR CUT Subtotal = 13376.9 CF 495.4 CY -100 YR CUT Subtotal = 3896.3 CF 144.3 CY

Table 1: Overall Summary of Floodplain Compensatory Storage*

Increment	Proposed Fill	Compensatory Storage Provided	Fill to Cut Ratio
0-10	249 CY	495 CY	1: 2.0
10-100	116 CY	144 CY	1: 1.2
Total	365 CY	640 CY	1: 1.8

*In addition to providing compensatory storage at an overall ratio of 1.5x the proposed fill in the floodplain, this design must provide compensatory storage at a ratio of 1x the proposed fill in the floodway. The required compensatory storage will be refined during the design phase of the project.



#### **APPENDIX L** Streambank Profile Concept Design

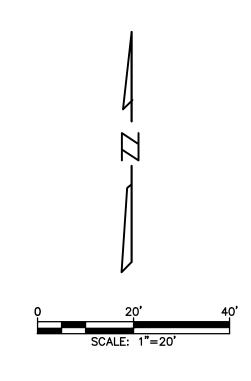
Engineering Resource Associates, Inc.

	1.
	- \

_	BITUM.	PATH	
		2	



REVISIO	NS:						
DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	<i>drawn by</i> : C.B./A.	
						<i>Checked by:</i> К. <i>Approved by:</i> К.	A. <b>B</b> ENGIN RESOURCE


NEERING<br/>CE ASSOCIATES3S701 WEST AVENUE, SUITE 150<br/>WARRENVILLE, ILLINOIS 60555<br/>PHONE (630) 393-3060<br/>FAX (630) 393-215210 S. RIVERSIDE PLAZA , SUITE 875<br/>CHICAGO, ILLINOIS 60606<br/>PHONE (312) 474-7841<br/>FAX (312) 474-6099

2416 GALEN DRIVE CHAMPAIGN, ILLINOIS 61821 PHONE (217) 351-6268 FAX (217) 355-1902

OAK BROOK PARK DIS OAK BROOK, ILLING

# BITUM. PATH ---+662.03-662-+662.28— — 659— _ --658----

-655----

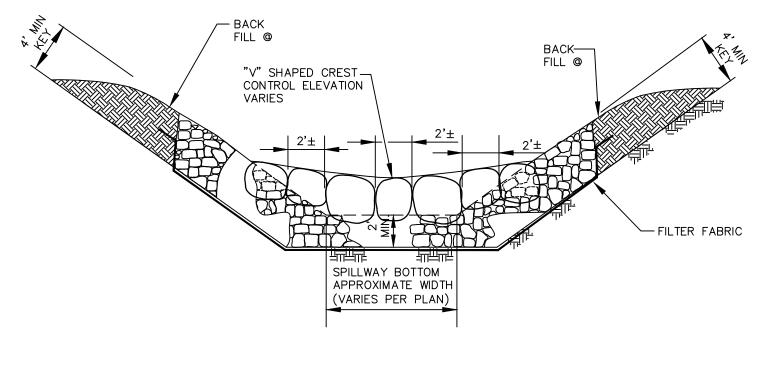


#### <u>LEGEND</u>

	= EX. PROPERTY LINE
	= EX. LOT LINE
	= EX. EASEMENT LINE
	= EX. BUILDING LINE
	= EX. CENTER LINE
	= EX. SANITARY LINE
	= EX. STORM LINE
	= EX. WATER LINE
	= EX. CONCRETE CURB & GUTTER
	= EX. TREE/BRUSH LINE
780	= EX. 1 FOOT CONTOURS
0	= EX. CATCH BASIN
_ [-]	= EX. SIGN
+700.00	= EX. SPOT ELEVATION
×	= EX. CONIFEROUS TREE
L'A	= EX. DECIDUOUS TREE

#### ABBREVIATIONS

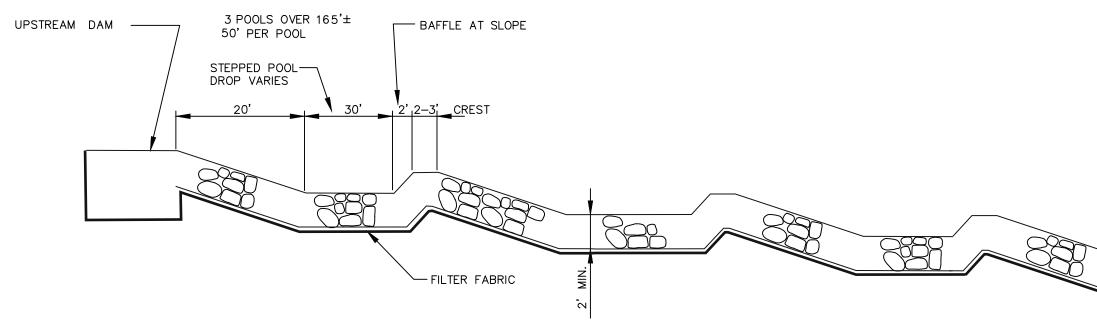
A B.S.L. CH CONC. DOC. E FIP FIR INV. N R R.C.P R.O.W. S T/PIPE W (XXX.XX)	ARC LENGTH BUILDING SETBACK LINE CHORD CONCRETE DOCUMENT EAST FOUND IRON PIPE FOUND IRON ROD INVERT NORTH RADIUS REINFORCED CONCRETE PIPE RIGHT OF WAY SOUTH TOP OF PIPE WEST RECORD INFORMATION
XXX.XX	MEASURED INFORMATION


SITE BENCHMARK CUT CROSS IN SOUTHWEST CORNER OF SIDEWALK LOCATED NORTH OF THE ASPHALT PATH NORTH OF GINGER CREEK.
ELEV: 663.09 (NAVD 88)

PROFESSIONAL DESIGN FIRM NUMBER: 184.001186 LICENSE EXPIRES APRIL 30, 2023

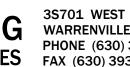
	TITLE:	<i>SCALE</i> : 1"=20'	Б Д
ISTRICT	GINGER CREEK	DATE: APRIL, 2023	ð S
VOIS		JOB NO: W22314	ഫ്
VU/3	EXISTING CONDITIONS PLAN	_{SHEET} <b>1</b> of <b>1</b>	: \Oak




REVISION	VS:						
DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	<i>drawn by</i> : R	
						CHECKED BY: APPROVED BY:	RESOURCE ASSOCIAT



<u>SECTION A-A</u>




<u>PLAN</u>

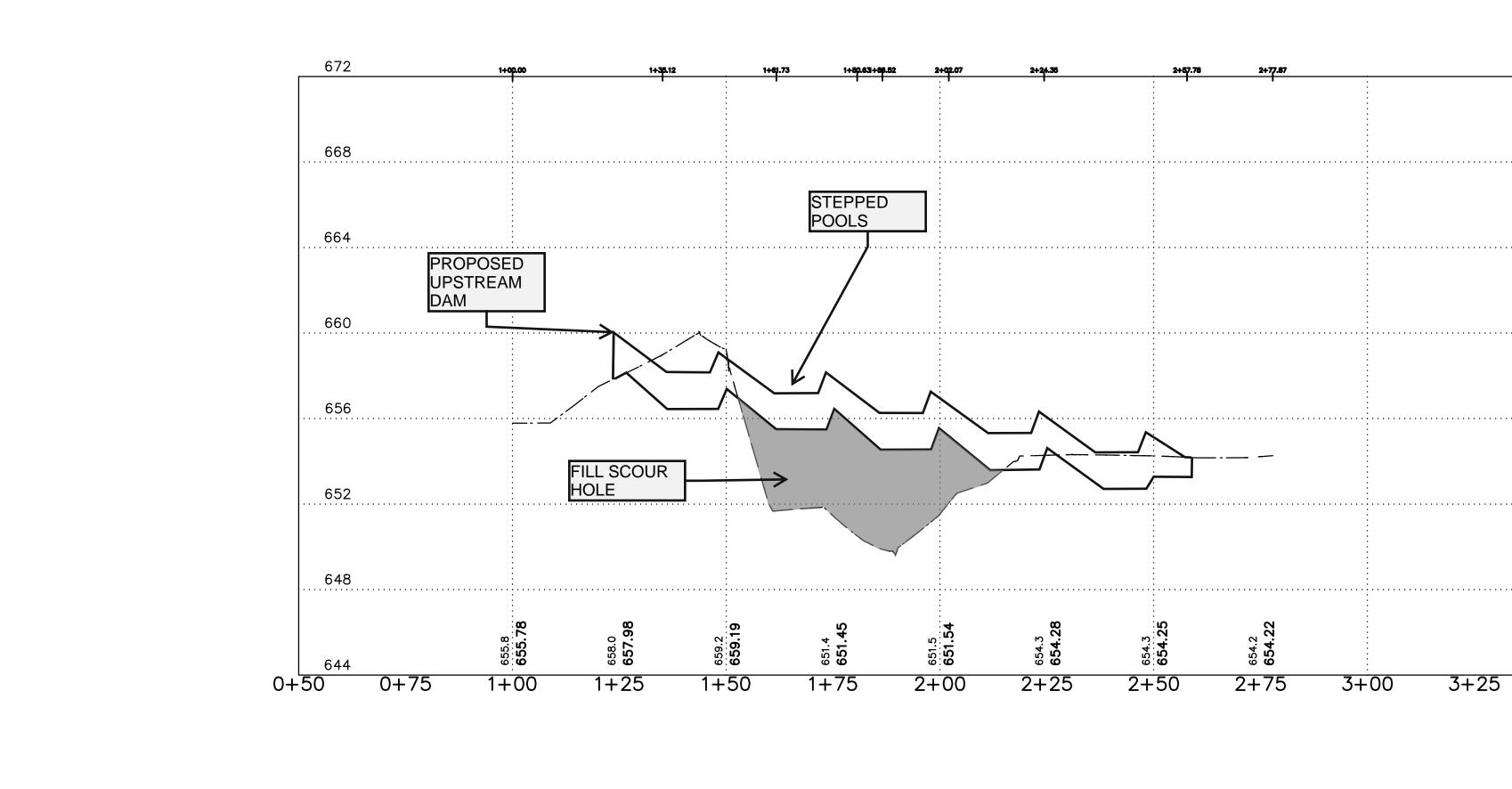


<u>PROFILE</u>

STEPPED POOL DETAIL



 NG
 3S701 WEST AVENUE, SUITE 150
 10 S. RIVERSIDE PLAZA, SUITE 875
 2416 GALEN DRIVE


 VMARRENVILLE, ILLINOIS 60555
 10 S. RIVERSIDE PLAZA, SUITE 875
 2416 GALEN DRIVE

 PHONE (630) 393-3060
 PHONE (312) 474-7841
 PHONE (217) 351-6268

 FAX (630) 393-2152
 FAX (312) 474-6099
 FAX (217) 355-1902

OAK BROOK PARK DISTRICT

TITLE:		SCALE: N.T.S.
	STEPPED POOL DETAIL	DATE: March 2022 JOB NO: SHEET1_0F_1_



5:						
BY	DESCRIPTION	DATE	BY	DESCRIPTION	<i>DRAWN BY</i> : C.B./A.C	
					BY     DESCRIPTION     DATE     BY     DESCRIPTION	

 INEERING RCE ASSOCIATES
 3S701 WEST AVENUE, SUITE 150 WARRENVILLE, ILLINOIS 60555 PHONE (630) 393-3060 FAX (630) 393-2152
 10 S. RIVERSIDE PLAZA , SUITE 875 CHICAGO, ILLINOIS 60606 PHONE (312) 474-7841 FAX (312) 474-6099
 2416 GALEN DRIVE CHAMPAIGN, ILLINOIS 61821 PHONE (217) 351-6268 FAX (217) 355-1902

OAK BROOK PARK DIST OAK BROOK, ILLINOI

672		
668		
664		
660		
656		
652		
648		
644 3+50		
	PROFESSIONAL DESIGN FIRM NUMBER LICENSE EXPIRES APRIL 30, 2023	: 184.001186
STRICT DIS	PROFILE A	SCALE: 1"=20'H, 1"=4'V DATE: APRIL, 2023 TOB NO: W22314
	3	<u>SHEET0F</u>